Neuronal calcium-binding proteins and schizophrenia

[1]  C. Andressen,et al.  Calcium-binding proteins: selective markers of nerve cells , 1993, Cell and Tissue Research.

[2]  P. Somogyi,et al.  Relationship of neuronal vulnerability and calcium binding protein immunoreactivity in ischemia , 1990, Experimental Brain Research.

[3]  I. Brown,et al.  Analysis of putative high-mobility-group (HMG) proteins in neuronal and glial nuclei from rabbit brain , 1981, Neurochemical Research.

[4]  A. Guidotti,et al.  Calmodulin in brain of schizophrenics , 1980, Neurochemical Research.

[5]  I. Módy,et al.  Calbindin-D28K (CaBP) levels and calcium currents in acutely dissociated epileptic neurons , 2004, Experimental Brain Research.

[6]  Gavin P. Reynolds,et al.  A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia , 2002, Schizophrenia Research.

[7]  C. Beasley,et al.  Neurochemical correlates of cortical GABAergic deficits in schizophrenia: selective losses of calcium binding protein immunoreactivity , 2001, Brain Research Bulletin.

[8]  C. Beasley,et al.  GABAergic neuronal subtypes in the human frontal cortex — development and deficits in schizophrenia , 2001, Journal of Chemical Neuroanatomy.

[9]  P. Goldman-Rakic,et al.  Segregation of serotonin 5‐HT2A and 5‐HT3 receptors in inhibitory circuits of the primate cerebral cortex , 2000, The Journal of comparative neurology.

[10]  C. Beasley,et al.  No alterations in the density of parvalbumin or calretinin immunoreactive neurons in the anterior cingulate cortex (BA 24b/c) in schizophrenia or bipolar disorder , 2000, Schizophrenia Research.

[11]  J. Newcomer,et al.  NMDA receptor hypofunction model of schizophrenia. , 1999, Journal of psychiatric research.

[12]  J. Pierri,et al.  Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia , 1999, Biological Psychiatry.

[13]  F. Benes,et al.  Evidence for altered trisynaptic circuitry in schizophrenic hippocampus , 1999, Biological Psychiatry.

[14]  N. Kuroki,et al.  Calbindin immunoreactivity in the hippocampal formation and neocortex of schizophrenics , 1999, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[15]  Paul J. Harrison The neuropathology of schizophrenia , 2008 .

[16]  D. Lewis Chandelier cells: shedding light on altered cortical circuitry in schizophrenia , 1998, Molecular Psychiatry.

[17]  F. Terro,et al.  Mild kainate toxicity produces selective motoneuron death with marked activation of CA2+-permeable AMPA/kainate receptors , 1998, Brain Research.

[18]  F. Gage,et al.  Nicotinic Receptor-Induced Apoptotic Cell Death of Hippocampal Progenitor Cells , 1998, The Journal of Neuroscience.

[19]  F. Benes,et al.  A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives , 1998, Biological Psychiatry.

[20]  P. Gaspar,et al.  Subpopulations of cortical GABAergic interneurons differ by their expression of D1 and D2 dopamine receptor subtypes. , 1998, Brain research. Molecular brain research.

[21]  T. Woo,et al.  A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[22]  B. Bogerts,et al.  Schizophrenia and anteroventral thalamic nucleus: selective decrease of parvalbumin-immunoreactive thalamocortical projection neurons , 1998, Psychiatry Research: Neuroimaging.

[23]  D. Weinberger,et al.  A candidate molecule approach to defining developmental pathology in schizophrenia. , 1998, Schizophrenia bulletin.

[24]  P. Kalus,et al.  Altered distribution of parvalbumin-immunoreactive local circuit neurons in the anterior cingulate cortex of schizophrenic patients , 1997, Psychiatry Research: Neuroimaging.

[25]  T. Woo,et al.  Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons. , 1997, The American journal of psychiatry.

[26]  C. Beasley,et al.  Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics , 1997, Schizophrenia Research.

[27]  H. Thoenen,et al.  Vulnerability of Midbrain Dopaminergic Neurons in Calbindin‐D28k‐deficient Mice: Lack of Evidence for a Neuroprotective Role of Endogenous Calbindin in MPTPtreated and Weaver Mice , 1997, The European journal of neuroscience.

[28]  P. Goldman-Rakic,et al.  Functional and anatomical aspects of prefrontal pathology in schizophrenia. , 1997, Schizophrenia bulletin.

[29]  L. Colom,et al.  Expression of calbindin-D28K in motoneuron hybrid cells after retroviral infection with calbindin-D28K cDNA prevents amyotrophic lateral sclerosis IgG-mediated cytotoxicity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Marco R. Celio,et al.  Guidebook to the calcium-binding proteins , 1996 .

[31]  S. Sesack,et al.  Axon terminals immunolabeled for dopamine or tyrosine hydroxylase synapse on GABA‐immunoreactive dendrites in rat and monkey cortex , 1995, The Journal of comparative neurology.

[32]  F. Benes Altered glutamatergic and GABAergic mechanisms in the cingulate cortex of the schizophrenic brain. , 1995, Archives of general psychiatry.

[33]  J. Olney,et al.  Glutamate receptor dysfunction and schizophrenia. , 1995, Archives of general psychiatry.

[34]  S. Daviss,et al.  Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons , 1995, Psychiatry Research.

[35]  P. Goldman-Rakic,et al.  Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. , 1995, Archives of general psychiatry.

[36]  C. Marcuccilli,et al.  Regulation of excitatory transmission at hippocampal synapses by calbindin D28k. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  D. Dr Calcium regulation of apoptosis. , 1995 .

[38]  K. A. Jones,et al.  Cortical neurons containing calretinin are selectively resistant to calcium overload and excitotoxicity in vitro , 1994, Neuroscience.

[39]  V. Möckel,et al.  Vulnerability to excitotoxic stimuli of cultured rat hippocampal neurons containing the calcium-binding proteins calretinin and calbindin D28K , 1994, Brain Research.

[40]  W. Janssen,et al.  Distribution and synaptic localization of immunocytochemically identified NMDA receptor subunit proteins in sensory-motor and visual cortices of monkey and human , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  Françoise Condé,et al.  Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology , 1994, The Journal of comparative neurology.

[42]  C. Heizmann,et al.  Parvalbumin and calbindin D‐28k in the human motor system and in motor neuron disease , 1993, Neuropathology and applied neurobiology.

[43]  J. Lund,et al.  Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics , 1993, The Journal of comparative neurology.

[44]  B. Komm,et al.  Stable expression of the calbindin-D28K complementary DNA interferes with the apoptotic pathway in lymphocytes. , 1992, Molecular endocrinology.

[45]  K. Baimbridge,et al.  Calcium-binding proteins in the nervous system , 1992, Trends in Neurosciences.

[46]  C. Heizmann,et al.  Changes in Ca2+-binding proteins in human neurodegenerative disorders , 1992, Trends in Neurosciences.

[47]  F. Benes,et al.  Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. , 1991, Archives of general psychiatry.

[48]  M. Mattson,et al.  Evidence for calcium-reducing and excitoprotective roles for the calcium-binding protein calbindin-1328k in cultured hippocampal neurons , 1991, Neuron.

[49]  J. Mazière,et al.  Could the interaction of neuroleptics with calmodulin be an "explanation" of the psychotropic effects? , 1991, L'Encephale.

[50]  S. Christakos,et al.  Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[51]  H. Scharfman,et al.  Protection of dentate hilar cells from prolonged stimulation by intracellular calcium chelation. , 1989, Science.

[52]  R. S. Sloviter Calcium‐binding protein (calbindin‐D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity , 1989, The Journal of comparative neurology.

[53]  S. Christakos,et al.  Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations, and molecular biology. , 1989, Endocrine reviews.

[54]  C. Klee,et al.  Advances in second messenger and phosphoprotein research , 1988 .

[55]  F. Benes,et al.  Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. , 1986, Archives of general psychiatry.