On the nonautonomous difference equation xn+1 = An + (xpn-1 / xqn)

Abstract In this paper we study the asymptotic behavior and the periodicity of the positive solutions of the nonautonomous difference equation: x n + 1 = A n + x n - 1 p x n q , n = 0 , 1 , … , where A n is a positive bounded sequence, p , q  ∈ (0, ∞) and x −1 , x 0 are positive numbers.

[1]  Stevo Stević,et al.  On the Recursive Sequence xn=1 , 2007 .

[2]  Stevo Stević,et al.  Boundedness character of a class of difference equations , 2009 .

[3]  Stevo Stević,et al.  Asymptotics of Some Classes of Higher-Order Difference Equations , 2007 .

[4]  Stevo Stevic,et al.  On a class of third-order nonlinear difference equations , 2009, Appl. Math. Comput..

[5]  G. Ladas,et al.  Periodicities in Nonlinear Difference Equations , 2004 .

[6]  H. M. El-Owaidy,et al.  On asymptotic behaviour of the difference equation xn+1=α+(xn-k/xn) , 2004, Appl. Math. Comput..

[7]  S. Stević On monotone solutions of some classes of difference equations , 2006 .

[8]  C. Kent,et al.  On the Recursive Sequence x n+1= , 2003 .

[9]  Kenneth S. Berenhaut,et al.  The global attractivity of the rational difference equation $y_n=A+\left(\frac{y_{n-k}}{y_{n-m}}\right)^p$ , 2008 .

[10]  S. Stević On a class of higher-order difference equations , 2009 .

[11]  S. Stević Boundedness character of a fourth order nonlinear difference equation , 2009 .

[12]  V. Kocić,et al.  Global Behavior of Nonlinear Difference Equations of Higher Order with Applications , 1993 .

[13]  Stevo Stevic On the difference equation xn+1=alpha + xn-1/xn , 2008, Comput. Math. Appl..

[14]  Lothar Berg,et al.  On the Asymptotics of Nonlinear Difference Equations , 2002 .

[15]  Stevo Stević Short Note: A Note on Periodic Character of a Difference Equation , 2004 .

[16]  Alaa E. Hamza,et al.  On the recursive sequence xn+1= , 2008, Comput. Math. Appl..

[17]  Kenneth S. Berenhaut,et al.  A note on positive non-oscillatory solutions of the difference equation , 2006 .

[18]  Stevo Stević,et al.  On the Behaviour of the Solutions of a Second-Order Difference Equation , 2007 .

[19]  Stevo Stević,et al.  On the Recursive Sequence xn+1=A+xnp/xn−1p , 2007 .

[20]  R. DeVault,et al.  Global behavior of solutions of the nonlinear difference equation , 2005 .

[21]  S. Stevo Boundedness character of two classes of third-order difference equations(1 , 2009 .

[22]  Stevo Stević,et al.  On the recursive sequence $$x_{n + 1} = \alpha + \frac{{x_{n - 1}^p }}{{x_n^p }}$$ , 2005 .

[23]  Kenneth S. Berenhaut,et al.  The behaviour of the positive solutions of the difference equation , 2006 .

[24]  C. Schinas,et al.  On a (k+1)-th order difference equation with a coefficient of period k+1 , 2005 .

[25]  On a nonautonomous difference equation with bounded coefficient , 2007 .

[26]  G. Ladas,et al.  On the Recursive Sequencexn + 1 = α + xn − 1/xn☆ , 1999 .

[27]  JOHN D. FOLEY,et al.  The global attractivity of the rational difference equation yn =1 , 2022 .

[28]  Kenneth S. Berenhaut,et al.  The global attractivity of the rational difference equation _{}=1+\frac{_{-}}_{-} , 2007 .

[29]  On a difference equation with 3-periodic coefficient , 2005 .

[30]  C. Schinas,et al.  On the Recursive Sequence , 2009 .

[31]  Kenneth S. Berenhaut,et al.  THE GLOBAL ATTRACTIVITY OF THE RATIONAL DIFFERENCE EQUATION yn = A+ (yn-k/yn-m)p , 2007 .

[32]  E. Camouzis,et al.  Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures , 2001 .

[33]  G. Ladas,et al.  On the Dynamics of with a Period-two Coefficient , 2004 .

[34]  A. M. Ahmed,et al.  On asymptotic behaviour of the difference equation $$X_{N + 1} = \alpha + \frac{{X_{N - 1} ^P }}{{X_N ^P }}$$ , 2003 .