Review and perspectives: shape memory alloy composite systems

Following their discovery in the early 1960s, there has been a continuous quest for ways to take advantage of the extraordinary properties of shape memory alloys (SMAs). These intermetallic alloys can be extremely compliant while retaining the strength of metals and can convert thermal energy to mechanical work. The unique properties of SMAs result from a reversible diffussionless solid-to-solid phase transformation from austenite to martensite. The integration of SMAs into composite structures has resulted in many benefits, which include actuation, vibration control, damping, sensing, and self-healing. However, despite substantial research in this area, a comparable adoption of SMA composites by industry has not yet been realized. This discrepancy between academic research and commercial interest is largely associated with the material complexity that includes strong thermomechanical coupling, large inelastic deformations, and variable thermoelastic properties. Nonetheless, as SMAs are becoming increasingly accepted in engineering applications, a similar trend for SMA composites is expected in aerospace, automotive, and energy conversion and storage-related applications. In an effort to aid in this endeavor, a comprehensive overview of advances with regard to SMA composites and devices utilizing them is pursued in this paper. Emphasis is placed on identifying the characteristic responses and properties of these material systems as well as on comparing the various modeling methodologies for describing their response. Furthermore, the paper concludes with a discussion of future research efforts that may have the greatest impact on promoting the development of SMA composites and their implementation in multifunctional structures.

[1]  David C. Dunand,et al.  Phase fraction, texture and strain evolution in superelastic NiTi and NiTi–TiC composites investigated by neutron diffraction , 1999 .

[2]  Ayman M. Okeil,et al.  Overview of Potential and Existing Applications of Shape Memory Alloys in Bridges , 2011 .

[3]  Shashank Priya,et al.  A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators , 2011, Bioinspiration & biomimetics.

[4]  M. Shakeri,et al.  Nonlinear dynamics of SMA-fiber-reinforced composite beams subjected to a primary/secondary-resonance excitation , 2015 .

[5]  Sung Nam Jung,et al.  Optimal design of a variable-twist proprotor incorporating shape memory alloy hybrid composites , 2011 .

[6]  Yanju Liu,et al.  Shape-memory polymers and their composites: Stimulus methods and applications , 2011 .

[7]  J. Ro,et al.  NITINOL-reinforced plates: Part II. Static and buckling characteristics☆ , 1995 .

[8]  Xueyuan Feng,et al.  Processing of multi-walled carbon nanotube-reinforced TiNi composites by hot pressed sintering , 2011 .

[9]  C. Rogers,et al.  High velocity impact response of composites with surface bonded nitinol-SMA hybrid layers , 1995 .

[10]  S. Allen,et al.  Rearrangement of twin variants in ferromagnetic shape memory alloy–polyurethane composites studied by stroboscopic neutron diffraction , 2008 .

[11]  C. J. de Araújo,et al.  Fabrication and static characterization of carbon-fiber-reinforced polymers with embedded NiTi shape memory wire actuators , 2008 .

[12]  V. Michaud,et al.  Effect of annealing and silylation on the strength of melt-spun Ni–Mn–Ga fibres and their adhesion to epoxy , 2014 .

[13]  L. Cui,et al.  Narrow hysteresis behavior of TiNi shape memory alloy constrained by NbTi matrix during incomplete transformation , 2012 .

[14]  David Bono,et al.  Acoustic energy absorption in Ni–Mn–Ga/polymer composites , 2011 .

[15]  H. Chan,et al.  Large magnetoelectric effect from mechanically mediated magnetic field-induced strain effect in Ni―Mn―Ga single crystal and piezoelectric effect in PVDF polymer , 2010 .

[16]  B. Andrawes,et al.  Superelastic SMA–FRP composite reinforcement for concrete structures , 2010 .

[17]  J. Aboudi,et al.  Investigation of shape memory alloy honeycombs by means of a micromechanical analysis , 2008 .

[18]  Ibrahim Karaman,et al.  Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy , 2015 .

[19]  Lorenza Petrini,et al.  A three‐dimensional model describing stress‐temperature induced solid phase transformations: thermomechanical coupling and hybrid composite applications , 2004 .

[20]  Youwei Du,et al.  Large converse magnetoelectric effect in ferromagnetic shape memory alloy Ni49Fe18Ga27Co6 and Pb(Zr0.52Ti0.48)O3 laminates , 2012 .

[21]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .

[22]  C. Mapelli,et al.  Processing of Shape Memory CuZnAl Open-cell Foam by Molten Metal Infiltration , 2009, Journal of Materials Engineering and Performance.

[23]  C. Cui,et al.  Fabrication of a porous CuAlMn shape memory alloy by the sintering–dissolution process , 2011 .

[24]  J. Rhee,et al.  Nonlinear finite element analysis of shape memory alloy (SMA) wire reinforced hybrid laminate composite shells , 2012 .

[25]  Craig A. Rogers,et al.  Response of Composite Beams to an Internal Actuator Force , 1991 .

[26]  Siddiq M. Qidwai,et al.  Strategies for integration of 3-D experimental data with modeling and simulation , 2011 .

[27]  L. Tong,et al.  Simulation and analysis of shape memory alloy fiber reinforced composite based on cohesive zone model , 2012 .

[28]  V. Birman Effect of Elastic or Shape Memory Alloy Particles on the Properties of Fiber-Reinforced Composites , 2009 .

[29]  Valery I. Levitas,et al.  Micromechanical modeling of stress-induced phase transformations. Part 1. Thermodynamics and kinetics of coupled interface propagation and reorientation , 2009 .

[30]  Y. Zhou,et al.  Enhanced thermomechanical functionality of a laser processed hybrid NiTi–NiTiCu shape memory alloy , 2012 .

[31]  Xueyuan Feng,et al.  The interfacial strength improvement of SMA composite using ZnO with electrochemical deposition method , 2014 .

[32]  H. Finckh,et al.  3D flexible NiTi-braided elastomer composites for smart structure applications , 2012 .

[33]  A. Simchi,et al.  Microstructural characterization of HIP consolidated NiTi–nano Al2O3 composites , 2014 .

[34]  Yan Liu,et al.  Phase transformation behaviors of TiNi fibers embedded in an aluminum matrix , 2014 .

[35]  Ji-lin Xu,et al.  Fabrication and properties of porous NiTi alloys by microwave sintering for biomedical applications , 2014 .

[36]  D. Dunand,et al.  Processing of NiTi Foams by Transient Liquid Phase Sintering , 2011, Journal of Materials Engineering and Performance.

[37]  Yuping Zhu,et al.  Effect of fiber shape on mechanical behavior of composite with elastoplastic matrix and SMA reinforcement. , 2009, Journal of the mechanical behavior of biomedical materials.

[38]  D. Lagoudas,et al.  Modeling of the thermomechanical behavior of porous shape memory alloys , 2001 .

[39]  Per Gren,et al.  Mechanical and Vibration Characteristics of Laminated Composite Plates Embedding Shape Memory Alloy Superelastic Wires , 2009, Journal of Materials Engineering and Performance.

[40]  C. Cui,et al.  Effects of macroscopic graphite particulates on the damping behavior of CuAlMn shape memory alloy , 2007 .

[41]  Kin-tak Lau,et al.  Design of pull-out stresses for prestrained SMA wire/polymer hybrid composites , 2005 .

[42]  I. Todd,et al.  Formation of microporous NiTi by transient liquid phase sintering of elemental powders. , 2012, Materials science & engineering. C, Materials for biological applications.

[43]  M. Qidwai,et al.  Numerical assessment of the dynamic behavior of hybrid shape memory alloy composite , 2004 .

[44]  A. R. Damanpack,et al.  Micro-mechanics of composite with SMA fibers embedded in metallic/polymeric matrix under off-axial loadings , 2015 .

[45]  Youngchul Park,et al.  Fatigue design curve of a TiNi/Al shape memory alloy composite for aircraft stringer design , 2009 .

[46]  D. Lagoudas,et al.  Transformation characteristics of shape memory alloy composites , 2011 .

[47]  D. Lagoudas,et al.  Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys , 2010 .

[48]  The Constrained Stress-Induced ε Reverse Martensitic Transformation Characteristic of Fe-Mn-Si Alloy Embedded in Cement Matrix , 2010 .

[49]  Pablo D. Zavattieri,et al.  Adhesion of nickel–titanium shape memory alloy wires to thermoplastic materials: theory and experiments , 2012 .

[50]  Michele Meo,et al.  Impact damage resistance and damage suppression properties of shape memory alloys in hybrid composites—a review , 2010 .

[51]  D. Lagoudas Shape memory alloys : modeling and engineering applications , 2008 .

[52]  A. Zafar,et al.  Fabrication and Cyclic Behavior of Highly Ductile Superelastic Shape Memory Composites , 2014 .

[53]  J. Raghavan,et al.  Damping, tensile, and impact properties of superelastic shape memory alloy (SMA) fiber-reinforced polymer composites , 2010 .

[54]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[55]  Wang Xiaohui,et al.  Structural modeling of SMA fiber hybrid active thin-walled composite beams , 2009 .

[56]  M. Taya,et al.  Strengthening mechanism of shape memory alloy reinforced metal matrix composite , 2004 .

[57]  K. Jansen,et al.  Thermal–electric characterization and modelling of a smart composite structure for architectural applications , 2014 .

[58]  Ralph C. Smith,et al.  Quantification of parameter uncertainty for robust control of shape memory alloy bending actuators , 2013 .

[59]  E. Olevsky,et al.  Combustion synthesis/quasi-isostatic pressing of TiC–NiTi cermets: processing and mechanical response , 2008 .

[60]  Dimitris C. Lagoudas,et al.  Aerospace applications of shape memory alloys , 2007 .

[61]  F. Zheng,et al.  Microstructure and property of the composite laminate cladded by explosive welding of CuAlMn shape memory alloy and QBe2 alloy , 2009 .

[62]  D. Dunand,et al.  Giant magnetic-field-induced strains in polycrystalline Ni-Mn-Ga foams. , 2009, Nature materials.

[63]  M. Ashby Overview No. 80: On the engineering properties of materials , 1989 .

[64]  Yufeng Zheng,et al.  Bending properties of epoxy resin matrix composites filled with Ni-Mn-Ga ferromagnetic shape memory alloy powders , 2009 .

[65]  Y. Furuya,et al.  Magnetic properties of thin-film Fe–Pd alloy and magnetoelectric coupling in Fe–Pd/Ag/PZT/Ag/Fe–Pd laminate composites , 2013 .

[66]  Yiu-Wing Mai,et al.  Lightweight NiTi shape memory alloy based composites with high damping capacity and high strength , 2010 .

[67]  James H. Mabe,et al.  Shape Memory Alloy Based Morphing Aerostructures , 2010 .

[68]  M. Shakeri,et al.  Thermo-mechanical behavior of shape adaptive composite plates with surface-bonded shape memory alloy ribbons , 2015 .

[69]  Somnath Ghosh,et al.  A framework for automated analysis and simulation of 3D polycrystalline microstructures. , 2008 .

[70]  Amit Bandyopadhyay,et al.  Compression fatigue behavior of laser processed porous NiTi alloy. , 2012, Journal of the mechanical behavior of biomedical materials.

[71]  V. Michaud,et al.  Improving solvent-based self-healing materials through shape memory alloys , 2012 .

[72]  Mark S. Shephard,et al.  Computational plasticity for composite structures based on mathematical homogenization: Theory and practice , 1997 .

[73]  L. Rong,et al.  Fabrication of cellular NiTi intermetallic compounds , 2000 .

[74]  Dimitris C. Lagoudas,et al.  Modeling porous shape memory alloys using micromechanical averaging techniques , 2002 .

[75]  Sung Nam Jung,et al.  Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites , 2010 .

[76]  THERMOMECHANICS OF HETEROGENEOUS MEDIA , 1997 .

[77]  Haluk E. Karaca,et al.  Magnetic Field‐Induced Phase Transformation in NiMnCoIn Magnetic Shape‐Memory Alloys—A New Actuation Mechanism with Large Work Output , 2009 .

[78]  Dimitris C. Lagoudas,et al.  Actuation of elastomeric rods with embedded two-way shape memory alloy actuators , 1998 .

[79]  L. Rong,et al.  Pore characteristics of porous NiTi alloy fabricated by combustion synthesis , 2001 .

[80]  Atsushi Sasaki,et al.  Enhanced Mechanical Properties of TiNi Shape Memory Fiber/Al Matrix Composite , 1993 .

[81]  J. V. Gilfrich,et al.  Effect of Low‐Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi , 1963 .

[82]  D. Lagoudas,et al.  Modeling of Magnetic SMAs , 2008 .

[83]  W. Drugan,et al.  A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites , 1996 .

[84]  Xudong Sun,et al.  Phase formation of Al2O3/Ti(C,N)–NiTi composite , 2008 .

[85]  T. C. Bor,et al.  Modeling of Stress Development During Thermal Damage Healing in Fiber-reinforced Composite Materials Containing Embedded Shape Memory Alloy Wires , 2010 .

[86]  C. Doumanidis,et al.  Controlled impact testing of woven fabric composites with and without reinforcing shape-memory alloy wires , 2014 .

[87]  A. Redaelli,et al.  Functional Characterization of Shape Memory CuZnAl Open-Cell Foams by Molten Metal Infiltration , 2011, Journal of Materials Engineering and Performance.

[88]  D. Dunand,et al.  NiTi and NiTi-TiC composites: Part 1. transformation and thermal cycling behavior , 1995 .

[89]  I. Karaman,et al.  Microstructural characterization and superelastic response of a Ni50.3Ti29.7Zr20 high-temperature shape memory alloy , 2014 .

[90]  Dimitris C. Lagoudas,et al.  Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys , 2005 .

[91]  A. Gruttadauria,et al.  Cyclic pseudoelastic behavior and energy dissipation in as-cast Cu-Zn-Al foams of different densities , 2011 .

[92]  Etienne Patoor,et al.  Effect of martensitic transformation on the debonding propagation in Ni–Ti shape memory wire composite , 2009 .

[93]  Reza Bagheri,et al.  Improved adhesion of NiTi wire to silicone matrix for smart composite medical applications , 2009 .

[94]  David L. McDowell,et al.  Representation and computational structure-property relations of random media , 2011 .

[95]  Craig A. Rogers,et al.  The Response of SMA Hybrid Composite Materials to Low Velocity Impact , 1994 .

[96]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[97]  Yang Ren,et al.  Nanostructured Nb reinforced NiTi shape memory alloy composite with high strength and narrow hysteresis , 2013 .

[98]  R. Mishra,et al.  Properties of friction stir-processed Al 1100–NiTi composite , 2007 .

[99]  V. Kalashnikov,et al.  Development of laminated nanocomposites on the bases of magnetic and non-magnetic shape memory alloys: Towards new tools for nanotechnology , 2014 .

[100]  Tarak Ben Zineb,et al.  Numerical tool for SMA material simulation: application to composite structure design , 2009 .

[101]  M. Manuel,et al.  Effect of phase on debond strength in shape memory alloy reinforced composites , 2014 .

[102]  Ya-Pu Zhao,et al.  A Study of Composite Beam with Shape Memory Alloy Arbitrarily Embedded under Thermal and Mechanical Loadings , 2007 .

[103]  D. H. Wang,et al.  Direct and converse magnetoelectric effects in Ni43Mn41Co5Sn11/Pb(Zr,Ti)O3 laminate , 2010 .

[104]  J. Aboudi,et al.  Micromechanical prediction of the two-way shape memory effect in shape memory alloy composites , 2009 .

[105]  David C. Dunand,et al.  Shape-memory NiTi foams produced by solid-state replication with NaF , 2007 .

[106]  Probing the Reverse Martensitic Transformation in Constrained Shape Memory Alloys via Electrical Resistance , 2010 .

[107]  Victor Birman,et al.  Review of Mechanics of Shape Memory Alloy Structures , 1997 .

[108]  A. B. Geltmacher,et al.  Image-based modeling of the response of experimental 3D microstructures to mechanical loading , 2006 .

[109]  Neil Morgan,et al.  Medical shape memory alloy applications—the market and its products , 2004 .

[110]  J. Jia,et al.  BEHAVIOR OF SHAPE MEMORY ALLOY REINFORCED COMPOSITE PLATES PART I: Model Formulations and Control Concepts , 1989 .

[111]  Christian Boller,et al.  Design and performance of a shape memory alloy-reinforced composite aerodynamic profile , 2008 .

[112]  H. Tobushi,et al.  Thermomechanical Properties of Shape-Memory Alloy and Polymer and Their Composites , 2009 .

[113]  Dimitris C. Lagoudas,et al.  The cylindrical bending of composite plates with piezoelectric and SMA layers , 1994 .

[114]  H. Ozcan,et al.  Shape memory behavior of Ni-rich NiTi foam with different porosity percentages , 2013 .

[115]  D. Dunand,et al.  Niti and NiTi-TiC composites: Part III. shape-memory recovery , 1996 .

[116]  Jeanette J. Epps,et al.  Shape memory alloy actuation for active tuning of composite beams , 1997 .

[117]  S. Zwaag,et al.  On the transformation behaviour of NiTi particulate reinforced AA2124 composites , 2009 .

[118]  Darren J. Hartl,et al.  Iterative calibration of a shape memory alloy constitutive model from 1D and 2D data using optimization methods , 2014, Smart Structures.

[119]  Stefan Seelecke,et al.  Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams , 2008 .

[120]  Effects of shape memory alloys on low velocity impact characteristics of composite plate , 2011 .

[121]  K. M. Bajoria,et al.  A two-dimensional finite element analysis of a shape memory alloy laminated composite plate , 2006 .

[122]  S. Allen,et al.  Large energy absorption in Ni-Mn-Ga/polymer composites , 2005 .

[123]  C. R. Fuller,et al.  Active control of sound radiation from panels using embedded shape memory alloy fibers , 1990 .

[124]  Ziya Esen The effect of processing routes on the structure and properties of magnesium–TiNi composites , 2012 .

[125]  Laurent Adam,et al.  A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites , 2011 .

[126]  M. Barnett,et al.  Actuation curvature limits for a composite beam with embedded shape memory alloy wires , 2014 .

[127]  D. Dunand,et al.  Porous NiTi by creep expansion of argon-filled pores , 2009 .

[128]  Yves Chemisky,et al.  Computational micro to macro transitions for shape memory alloy composites using periodic homogenization , 2015 .

[129]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[130]  M. Dapino,et al.  NiTi–Al interface strength in ultrasonic additive manufacturing composites , 2014 .

[131]  M. Bram,et al.  Mechanical Properties of Highly Porous NiTi Alloys , 2011, Journal of Materials Engineering and Performance.

[132]  Ron Barrett,et al.  Super-active shape-memory alloy composites , 1996 .

[133]  Justin Manzo,et al.  Methodology for Design of an Active Rigidity Joint , 2009 .

[134]  L. Cui,et al.  Negative thermal expansion arrest point memory effect in TiNi shape memory alloy and NbTi/TiNi composite , 2012 .

[135]  Ati,et al.  NUMERICAL HOMOGENIZATION TECHNIQUES FOR THE EVALUATION OF MECHANICAL BEHAVIOR OF A COMPOSITE WITH SMA INCLUSIONS , 2010 .

[136]  G. Newaz,et al.  An Investigation on the Interface in a NiTi Short-Fiber-Reinforced 6061 Aluminum Composite by Transmission Electron Microscope , 2008 .

[137]  L. Ye,et al.  Analysis of internal stresses induced by strain recovery in a single SMA fiber–matrix composite , 2011 .

[138]  Ferdinando Auricchio,et al.  Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior , 1997 .

[139]  G. Crawford,et al.  Interfacial Reactions in Model NiTi Shape Memory Alloy Fiber-Reinforced Sn Matrix “Smart” Composites , 2009 .

[140]  X. M. Li,et al.  Application of shape memory alloy TiNi in low thermal expansion copper composites , 2009 .

[141]  J. Baur,et al.  The morphing properties of a vascular shape memory composite , 2013 .

[142]  G. Newaz,et al.  Aluminum-based composites reinforced with SiC particles and NiTi fibers: influence of fiber dimensions and aging time on mechanical properties , 2011 .

[143]  Dimitris C. Lagoudas,et al.  Transformation of Embedded Shape Memory Alloy Ribbons , 1998 .

[144]  G Ipek Nakaş,et al.  Fatigue behavior of TiNi foams processed by the magnesium space holder technique. , 2011, Journal of the mechanical behavior of biomedical materials.

[145]  C. Cui,et al.  Fabrication and internal friction behaviors of novel porous CuAlMn shape memory alloy filled with polystyrene , 2013 .

[146]  I. Karaman,et al.  Long-Term Oxidation of Ti2AlC in Air and Water Vapor at 1000–1300°C Temperature Range , 2011 .

[147]  J. Jia,et al.  Behavior of shape memory alloy reinforced composite plates. II - Results , 1989 .

[148]  D. Lagoudas,et al.  Magnetic field-induced martensitic phase transformation in magnetic shape memory alloys: Modeling and experiments , 2014 .

[149]  W. Huang,et al.  Stimulus-responsive shape memory materials: A review , 2012 .

[150]  L. Geng,et al.  High damping capacity in porous NiTi alloy with bimodal pore architecture , 2013 .

[151]  Sung-Hoon Ahn,et al.  Locomotion of inchworm-inspired robot made of smart soft composite (SSC) , 2014, Bioinspiration & biomimetics.

[152]  Jan-Anders E. Månson,et al.  Embedded Shape‐Memory Alloy Wires for Improved Performance of Self‐Healing Polymers , 2008 .

[153]  Tarık Aydoğmuş Processing of interpenetrating Mg–TiNi composites by spark plasma sintering , 2015 .

[154]  I. Karaman,et al.  Magnetic response of porous NiCoMnSn metamagnetic shape memory alloys fabricated using solid-state replication , 2012 .

[155]  H. Tobushi,et al.  Three-way actuation of shape memory composite , 2011 .

[156]  A. Bhattacharyya,et al.  On the anisotropic thermal conductivity of shape memory alloy single crystals , 2007 .

[157]  J. Schrooten,et al.  Basic design guidelines for SMA/epoxy smart composites , 2005 .

[158]  Peter K. Liaw,et al.  Fatigue and fracture behavior of nickel–titanium shape-memory alloy reinforced aluminum composites , 2001 .

[159]  Shyi-Kaan Wu,et al.  Fabrication of Porous Ti-rich Ti51Ni49 by Evaporating NaCl Space Holder , 2014, Metallurgical and Materials Transactions A.

[160]  B. Bay,et al.  Digital volume correlation: Three-dimensional strain mapping using X-ray tomography , 1999 .

[161]  Somnath Ghosh,et al.  A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: Synthetic structure generation , 2008 .

[162]  Jan-Anders E. Månson,et al.  Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires , 2009 .

[163]  Marcelo A. Savi,et al.  A constitutive model for shape memory alloys considering tensile¿compressive asymmetry and plasticity , 2005 .

[164]  M. Pindera,et al.  Micro-macromechanical analysis of heterogeneous materials: Macroscopically homogeneous vs periodic microstructures , 2007 .

[165]  R. Lebensohn,et al.  Full-Field vs. Homogenization Methods to Predict Microstructure-Property Relations for Polycrystalline Materials , 2011 .

[166]  D. Dunand,et al.  Increasing magnetoplasticity in polycrystalline Ni-Mn-Ga by reducing internal constraints through porosity. , 2007, Physical review letters.

[167]  Sylvain Calloch,et al.  A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings , 2009 .

[168]  Jean-Louis Chaboche,et al.  On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites , 2005 .

[169]  D. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops , 1999 .

[170]  X. J. Wang,et al.  Titanium-nickel shape memory alloy foams for bone tissue engineering. , 2008, Journal of the mechanical behavior of biomedical materials.

[171]  Dimitris C. Lagoudas,et al.  On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material , 2000 .

[172]  Etienne Patoor,et al.  Micromechanical Modelling of Superelasticity in Shape Memory Alloys , 1996 .

[173]  M. Giordano,et al.  Fabrication and Thermo-Mechanical Characterization of a Shape Memory Alloy Hybrid Composite , 2011 .

[174]  Scott R. White,et al.  Manufacturing of Adaptive Graphite/Epoxy Structures with Embedded Nitinol Wires , 1995 .

[175]  Lucia Faravelli,et al.  Cable vibration mitigation by added SMA wires , 2008 .

[176]  J. Ro,et al.  NITINOL-reinforced plates: Part I. Thermal characteristics☆ , 1995 .

[177]  Hyuk-Jin Yoon,et al.  In situ Strain and Temperature Monitoring of Adaptive Composite Materials , 2006 .

[178]  H. Tobushi,et al.  Performance of Shape Memory Composite with SMA and SMP , 2009 .

[179]  I. Todd,et al.  Porous NiTi alloy by metal injection moulding/sintering of elemental powders: Effect of sintering temperature , 2012 .

[180]  Xingke Zhao,et al.  Pore structures of high-porosity NiTi alloys made from elemental powders with NaCl temporary space-holders , 2009 .

[181]  P. Liaw,et al.  In-situ studies of stress- and magnetic-field-induced phase transformation in a polymer-bonded Ni–Co–Mn–In composite , 2010 .

[182]  E. Cesari,et al.  Ferromagnetic shape memory alloys: Alternatives to Ni–Mn–Ga , 2008 .

[183]  Dimitris C. Lagoudas,et al.  Deformations of active flexible rods with embedded line actuators , 1993 .

[184]  Z. Ma,et al.  Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing , 2014 .

[185]  D. Dunand,et al.  Shape-memory NiTi foams produced by replication of NaCl space-holders. , 2008, Acta biomaterialia.

[186]  G. Dvorak,et al.  On a Correspondence Between Mechanical and Thermal Effects in Two-Phase Composites , 1990 .

[187]  J. Roberts,et al.  NiTi and NiTi-TiC composites: Part IV. Neutron diffraction study of twinning and shape-memory recovery , 1996 .

[188]  J. Ro,et al.  Control of the natural frequencies of nitinol-reinforced composite beams , 1995 .

[189]  Yong Liu,et al.  In situ W-NiTi shape memory alloy composite of high radiopacity , 2014 .

[190]  Tarık Aydoğmuş,et al.  Superelasticity and compression behavior of porous TiNi alloys produced using Mg spacers. , 2012, Journal of the mechanical behavior of biomedical materials.

[191]  H. Ishii,et al.  The effect of fiber volume fraction and aspect ratio on the creation of internal stress in the matrix and deformation for short-fiber shape memory alloy composite , 2006 .

[192]  B. Piotrowski,et al.  Modeling of niobium precipitates effect on the Ni47Ti44Nb9 Shape Memory Alloy behavior , 2012 .

[193]  L. Schultz,et al.  Textured polymer bonded composites with Ni–Mn–Ga magnetic shape memory particles , 2007 .

[194]  S. Khalili,et al.  Mechanical Behavior of Notched Plate Repaired with Polymer Composite and Smart Patches - Experimental Study , 2010 .

[195]  J. Reddy,et al.  Temperature-dependent thermal properties of a shape memory alloy/MAX phase composite: Experiments and modeling , 2014 .

[196]  Darren J. Hartl,et al.  Design and numerical analysis of an SMA mesh-based self-folding sheet , 2013 .

[197]  Jeffrey S. Moore,et al.  Self-Healing Polymers and Composites , 2010 .

[198]  J. Juan,et al.  Interaction of Cu–Al–Ni shape memory alloys particles with molten In and In + Sn matrices , 2008 .

[199]  D. H. Wang,et al.  Converse magnetoelectric effect in ferromagnetic shape memory alloy/piezoelectric laminate , 2009 .

[200]  J. Juan,et al.  Internal friction in a new kind of metal matrix composites , 2006 .

[201]  P. Liaw,et al.  Ni-Ti SMA-reinforced Al composites , 2000 .

[202]  Jung-Kyu Kim,et al.  Effect of shape memory alloy on impact damage behavior and residual properties of glass/epoxy laminates under low temperature , 2009 .

[203]  D. Dunand,et al.  Niobium Wires as Space Holder and Sintering Aid for Porous NiTi , 2011 .

[204]  D. Dunand,et al.  Niti and NiTi-TiC composites: Part II. compressive mechanical properties , 1996 .

[205]  Gang Chen,et al.  Porous NiTi alloys produced by press-and-sinter from Ni/Ti and Ni/TiH2 mixtures , 2013 .

[206]  Javier Segurado,et al.  Micromechanics of elasto-plastic materials reinforced with ellipsoidal inclusions , 2007 .

[207]  Dimitris C. Lagoudas,et al.  On the numerical evaluation of Eshelby's tensor and its application to elastoplastic fibrous composites , 1990 .

[208]  E. Sacco,et al.  Micromechanics and Homogenization of SMA-Wire-Reinforced Materials , 2005 .

[209]  J. Jia,et al.  Formulation of a Mechanical Model for Composites With Embedded SMA Actuators , 1992 .

[210]  Darren J. Hartl,et al.  Design and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet , 2013 .

[211]  Yiyi Li,et al.  Compressive property of porous NiTi alloy synthesized by combustion synthesis , 2002 .

[212]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[213]  Jan Frenzel,et al.  Cast-Replicated NiTiCu Foams with Superelastic Properties , 2012, Metallurgical and Materials Transactions A.

[214]  Colin Smith,et al.  Working principle of bio-inspired shape memory alloy composite actuators , 2010 .

[215]  Yasuo Kuga,et al.  Design of membrane actuator based on ferromagnetic shape memory alloy composite for synthetic jet applications , 2006 .

[216]  Steven M. Tuominen,et al.  High temperature shape memory alloys , 2010 .

[217]  Mohammed Cherkaoui,et al.  Micromechanics modeling of composite with ductile matrix and shape memory alloy reinforcement , 2000 .

[218]  M. Taya,et al.  Design of two-way reversible bending actuator based on a shape memory alloy/shape memory polymer composite , 2013 .

[219]  A. Pelton,et al.  An overview of nitinol medical applications , 1999 .

[220]  A. Maffezzoli,et al.  Embedding of Superelastic SMA Wires into Composite Structures: Evaluation of Impact Properties , 2009, Journal of Materials Engineering and Performance.

[221]  L. Schultz,et al.  Geometric factors on magnetically driven actuation behaviour for polycrystalline Ni–Mn–Ga and its composites , 2013 .

[222]  Amr M. Baz,et al.  Control of sound radiation from a NITINOL-reinforced plate into an acoustic cavity , 1996, Smart Structures.

[223]  Dimitris C. Lagoudas,et al.  A constitutive model for cyclic actuation of high-temperature shape memory alloys , 2014 .

[224]  Sung-Hoon Ahn,et al.  Woven type smart soft composite beam with in-plane shape retention , 2013 .

[225]  Sung-Hoon Ahn,et al.  A turtle-like swimming robot using a smart soft composite (SSC) structure , 2012 .

[226]  Sung-Hoon Ahn,et al.  Numerical simulation and verification of a curved morphing composite structure with embedded shape memory alloy wire actuators , 2013 .

[227]  S. Kauffmann-Weiss,et al.  NiMn‐Based Alloys and Composites for Magnetically Controlled Dampers and Actuators , 2012 .

[228]  C. A. Rogers,et al.  The Effect of Thermoplastic Composite Processing on the Performance of Embedded Nitinol Actuators , 1991 .

[229]  Craig A. Rogers,et al.  Shape memory alloys for damage-resistant composite structures , 1995, Other Conferences.

[230]  S. Russo,et al.  Shape memory alloy hybrid composites for improved impact properties for aeronautical applications , 2013 .

[231]  J. Juan,et al.  Mechanical spectroscopy measurements on SMA high-damping composites , 2009 .

[232]  Yves Bellouard,et al.  Shape memory alloys for microsystems: A review from a material research perspective , 2008 .

[233]  T. Sawaguchi,et al.  Development of Prestressed Concrete Using Fe-Mn-Si-Based Shape Memory Alloys Containing NbC * , 2005 .

[234]  Yan Liu,et al.  Effect of pre-oxidation of TiNi fibers on the interfacial and mechanical property of TiNif/Al composite , 2014 .

[235]  Yapu Zhao,et al.  A discussion on modeling shape memory alloy embedded in a composite laminate as axial force and elastic foundation , 2007 .

[236]  Akira Kawasaki,et al.  Compression behavior of porous NiTi shape memory alloy , 2005 .

[237]  M. Ashby A first report on deformation-mechanism maps , 1972 .

[238]  Haluk E. Karaca,et al.  Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals , 2006 .

[239]  J. Ruan,et al.  Effects of Nb addition on microstructure and mechanical properties of TiNiNb alloys fabricated by elemental powder sintering , 2014 .

[240]  Craig A. Rogers,et al.  Adaptive Composite Materials with Shape Memory Alloy Actuators for Cylinders and Pressure Vessels , 1995 .

[241]  M. Taya,et al.  Strengthening of Metal Matrix Composite by Shape Memory Effect , 1993 .

[242]  S. Shabalovskaya,et al.  Mechanical properties and shape memory of porous nitinol , 1994 .

[243]  Abhay Pandit,et al.  Fabrication methods of porous metals for use in orthopaedic applications. , 2006, Biomaterials.

[244]  Constantinos Soutis,et al.  Experimental research on strain monitoring in composite plates using embedded SMA wires , 2006 .

[245]  G. Proust,et al.  Interfacial study of NiTi–Ti3SiC2 solid state diffusion bonded joints , 2015 .

[246]  Daniel Barker,et al.  Experimental studies of active strain energy tuning of adaptive composites , 1990 .

[248]  Quan Wang,et al.  Nonlinear thermo-inertial instability of functionally graded shape memory alloy sandwich plates , 2015 .

[249]  Michele Meo,et al.  Finite element simulation of low velocity impact on shape memory alloy composite plates , 2005 .

[250]  Inderjit Chopra,et al.  Development of a Strain-Rate Dependent Model for Uniaxial Loading of SMA Wires , 2003 .

[251]  Sourav Chatterjee,et al.  Reversibly texturing active surfaces with spatial and temporal control , 2015 .

[252]  J. Juan,et al.  Influence of the matrix and of the thermal treatment on the martensitic transformation in metal matrix composites , 2008 .

[253]  J. Aboudi The Generalized Method of Cells and High-Fidelity Generalized Method of Cells Micromechanical Models—A Review , 2004 .

[254]  S. Marfia Micro–macro analysis of shape memory alloy composites , 2005 .

[255]  J. W. Ju,et al.  A stochastic micromechanical model for multiphase composites containing spherical inhomogeneities , 2015 .

[256]  F. Taheri,et al.  Characterization of a shape memory alloy hybrid composite plate subject to static loading , 2011 .

[257]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[258]  Lin Ye,et al.  Stress distributions in single shape memory alloy fiber composites , 2011 .

[259]  Sayan Gupta,et al.  Stochastic finite element analysis of layered composite beams with spatially varying non-Gaussian inhomogeneities , 2014 .

[260]  Arata Masuda,et al.  Vibration characteristics of laminated composite plates with embedded shape memory alloys , 2006 .

[261]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[262]  Minoru Taya,et al.  Modeling for piezoelectric-shape memory alloy composites , 2011 .

[263]  L. C. Brinson,et al.  Finite element simulation of a self-healing shape memory alloy composite , 2006 .

[264]  Victor Birman,et al.  Properties and response of composite material with spheroidal superelastic shape memory alloy inclusions subject to three-dimensional stress state , 2010 .

[265]  G. Weng,et al.  A two-level micromechanical theory for a shape-memory alloy reinforced composite , 2000 .

[266]  F. Han,et al.  Damping behavior of porous CuAlMn shape memory alloy , 2007 .

[267]  M. J. Ashrafi,et al.  A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys. , 2015, Journal of the mechanical behavior of biomedical materials.

[268]  D. Ratna,et al.  Recent advances in shape memory polymers and composites: a review , 2008 .

[269]  U. Ramamurty,et al.  Fatigue crack-growth in shape-memory NiTi and NiTi-TiC composites , 2000 .

[270]  E. Jacquet,et al.  From a shape memory alloys model implementation to a composite behavior , 2007 .

[271]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[272]  D. Dunand,et al.  Effect of pore architecture on magnetic-field-induced strain in polycrystalline Ni–Mn–Ga , 2011 .

[273]  Dao-xi Li,et al.  Gradient porosity and large pore size NiTi shape memory alloys , 2007 .

[274]  D. Dunand,et al.  Stress-induced martensitic transformations in NiTi and NiTi-TiC composites investigated by neutron diffraction , 1998 .

[275]  Klaus Neuking,et al.  Surface engineering of shape memory alloy/polymer-composites: Improvement of the adhesion between polymers and pseudoelastic shape memory alloys , 2008 .

[276]  M. Taya,et al.  Design of Piezo-SMA Composite for Thermal Energy Harvester Under Fluctuating Temperature , 2011 .

[277]  S. Stupp,et al.  Porous NiTi for bone implants: a review. , 2008, Acta biomaterialia.

[278]  A. F. Dericioglu,et al.  Monotonic and cyclic compressive behavior of superelastic TiNi foams processed by sintering using magnesium space holder technique , 2013 .

[279]  A. Hilger,et al.  Magnetic-field-induced recovery strain in polycrystalline Ni–Mn–Ga foam , 2010 .

[280]  Gangbing Song,et al.  Energy-dissipating and self-repairing SMA-ECC composite material system , 2015 .

[281]  H. Tobushi,et al.  Bending Actuation Characteristics of Shape Memory Composite with SMA and SMP , 2006 .

[282]  An investigation of the transient thermal response of a shape memoryalloy composite beam , 1990 .

[283]  M. Taya,et al.  Development of Short Fiber-Reinforced NiTi∕Al6061 Composite , 2007 .

[284]  O. Gutfleisch,et al.  Ni–Mn–In–Co single-crystalline particles for magnetic shape memory composites , 2009 .

[285]  G. Proust,et al.  Fabrication and characterization of NiTi/Ti3SiC2 and NiTi/Ti2AlC composites , 2014 .

[286]  Michel W. Barsoum,et al.  Elastic and Mechanical Properties of the MAX Phases , 2011 .

[287]  Bert Müller,et al.  Combining micro computed tomography and three-dimensional registration to evaluate local strains in shape memory scaffolds. , 2014, Acta biomaterialia.

[288]  Tarık Aydoğmuş,et al.  Enhanced Sintering of TiNi Shape Memory Foams under Mg Vapor Atmosphere , 2012, Metallurgical and Materials Transactions A.

[289]  B. Majumdar,et al.  Thermal cycle response of a lead-free solder reinforced with adaptive shape memory alloy , 2006 .

[290]  J. L. Cam,et al.  Mechanical characterization and comparison of different NiTi/silicone rubber interfaces , 2014 .

[291]  S. Hurlebaus,et al.  Seismic Response Control Using Shape Memory Alloys: A Review , 2011 .

[292]  Ashwin Rao,et al.  Design of multi-state and smart-bias components using Shape Memory Alloy and Shape Memory Polymer composites , 2013 .

[293]  S. Hong,et al.  Enhanced mechanical properties of spark plasma sintered NiTi composites reinforced with carbon nanotubes , 2014 .

[294]  Gangbing Song,et al.  Applications of shape memory alloys in civil structures , 2006 .

[295]  A. Agirregomezkorta,et al.  Effect of superelastic shape memory alloy wires on the impact behavior of carbon fiber reinforced in situ polymerized poly(butylene terephthalate) composites , 2011 .

[296]  L. Brinson,et al.  Shape memory alloys, Part I: General properties and modeling of single crystals , 2006 .

[297]  Dimitris C. Lagoudas,et al.  Micromechanics of precipitated near-equiatomic Ni-rich NiTi shape memory alloys , 2014 .

[298]  A. R. Damanpack,et al.  Micromechanics of shape memory alloy fiber–reinforced composites subjected to multi-axial non-proportional loadings , 2015 .

[299]  Nancy R. Sottos,et al.  Active Cooling of a Microvascular Shape Memory Alloy‐Polymer Matrix Composite Hybrid Material   , 2016 .

[300]  V. Michaud,et al.  Tailored processing of epoxy with embedded shape memory alloy wires , 2009 .

[301]  Y. C. Park,et al.  Effect of cold rolling on fatigue crack propagation of TiNi/Al6061 shape memory composite , 2005 .

[302]  P. Liaw,et al.  Particle size reduction of NiTi shape-memory alloy powders , 2000 .

[303]  H. Ibrahim,et al.  Limit-Cycle Oscillation of Shape Memory Alloy Hybrid Composite Plates at Elevated Temperatures , 2009 .

[304]  Yang Ren,et al.  In situ X-ray diffraction study of deformation behavior in a Fe/NiTi composite , 2012 .

[305]  Jean-Louis Chaboche,et al.  Towards a micromechanics based inelastic and damage modeling of composites , 2001 .

[306]  M. Tan,et al.  A theoretical model for the bending of a laminated beam with SMA fiber embedded layer , 2009 .

[307]  Tarak Ben Zineb,et al.  Simulation of the effect of elastic precipitates in SMA materials based on a micromechanical model , 2012 .

[308]  Gary A. Fleming,et al.  Modeling, Fabrication, and Testing of a SMA Hybrid Composite Jet Engine Chevron Concept , 2006 .

[309]  Qiang Zhang,et al.  Mechanical properties and damping capacity of SiCp/TiNif/Al composite with different volume fraction of SiC particle , 2014 .

[310]  Harry H. Robertshaw,et al.  Structural Acoustic Control of a Shape Memory Alloy Composite Beam , 1991 .

[311]  S. Zwaag,et al.  On the production and properties of novel particulate NiTip/AA2124 metal matrix composites , 2009 .

[312]  Othmane Benafan,et al.  Shape memory alloy actuator design: CASMART collaborative best practices and case studies , 2013, International Journal of Mechanics and Materials in Design.

[313]  Christian Huet,et al.  Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies , 1999 .

[314]  A. Bandyopadhyay,et al.  Rotating bending fatigue response of laser processed porous NiTi alloy , 2011 .

[315]  C. Ke,et al.  Nano-sized SiC particle reinforced NiTi alloy matrix shape memory composite , 2013 .

[316]  Eisaku Umezaki,et al.  Temperature Distributions of SMA Wires Embedded in Epoxy Resin Plates and Heated by Supplying Electric Current , 2006 .

[317]  Javier Segurado,et al.  Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenization models , 2004 .

[318]  Scott R. White,et al.  Theoretical modelling of residual and transformational stresses in SMA composites , 1996 .

[319]  M. Eslami,et al.  Exact solution for nonlinear thermal stability of hybrid laminated composite Timoshenko beams reinforced with SMA fibers , 2014 .

[320]  S. M. Haris,et al.  Vibration analysis of self-healing hybrid composite beam under moving mass , 2015 .

[321]  G. Eggeler,et al.  On the effect of TiC particles on the tensile properties and on the intrinsic two way effect of NiTi shape memory alloys produced by powder metallurgy , 1999 .

[322]  S. Gialanella,et al.  Chemical and mechanical treatments to improve the surface properties of shape memory NiTi wires , 2008 .

[323]  H. A. Sepiani,et al.  A thermo-micro-mechanical modeling for smart shape memory alloy woven composite under in-plane biaxial deformation , 2008 .

[324]  L. Cui,et al.  Influence of internal stress coupling on the deformation behavior of NiTi-Nb nanowire composites , 2014 .

[325]  J. Coughlin,et al.  Mechanical behavior of NiTi shape memory alloy fiber reinforced Sn matrix “smart” composites , 2009, Journal of Materials Science.

[326]  E. Patoor,et al.  Study of the martensitic transformation in NiTi–epoxy smart composite and its effect on the overall behavior , 2012 .

[327]  L G Machado,et al.  Medical applications of shape memory alloys. , 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[328]  D. Dunand,et al.  Effect of directional solidification on texture and magnetic-field-induced strain in Ni–Mn–Ga foams with coarse grains , 2015 .

[329]  S. Nemat-Nasser,et al.  Experimental characterization and micromechanical modeling of superelastic response of a porous NiTi shape-memory alloy , 2005 .

[330]  Dimitris C. Lagoudas,et al.  The influence of stress and temperature on the residual strain generated during pseudoelastic cycling of NiTi SMA wires , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[331]  W. Armstrong,et al.  Martensitic Transformations in a NiTi Fiber Reinforced 6061 Aluminum Matrix Composite , 1995 .

[332]  Toshiaki Natsuki,et al.  Mechanical properties of composites filled with SMA particles and short fibers , 2007 .

[333]  L. Brinson,et al.  Mimicking mussel adhesion to improve interfacial properties in composites. , 2008, Composites science and technology.

[334]  Mohammed Cherkaoui,et al.  Role of microstructure in the thermomechanical behavior of SMA composites , 1999 .

[335]  Marcelo A. Savi,et al.  Describing internal subloops due to incomplete phase transformations in shape memory alloys , 2005 .

[336]  I. Aaltio,et al.  Processing and properties of Ni–Mn–Ga magnetic shape memory alloy based hybrid materials , 2012 .

[337]  Dimitris C. Lagoudas,et al.  Design optimization and uncertainty analysis of SMA morphing structures , 2012 .

[338]  B. Majumdar,et al.  Thermomechanical response of a lead-free solder reinforced with a shape memory alloy , 2006 .

[339]  David C. Dunand,et al.  Mechanical anisotropy of shape-memory NiTi with two-dimensional networks of micro-channels , 2011 .

[340]  E. Patoor,et al.  Debonding initiation in a NiTi shape memory wire–epoxy matrix composite. Influence of martensitic transformation , 2010 .

[341]  C. Mapelli,et al.  Mechanical properties of martensitic Cu–Zn–Al foams in the pseudoelastic regime , 2010 .

[342]  L. G. Machado,et al.  Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys , 2012 .

[343]  Vladimir L. Kalashnikov,et al.  Submicron-sized actuators based on enhanced shape memory composite material fabricated by FIB-CVD , 2012 .

[344]  Bingyun Li,et al.  A recent development in producing porous Ni–Ti shape memory alloys , 2000 .

[345]  J. Segurado,et al.  Micromechanics of particle-reinforced elasto-viscoplastic composites : Finite element simulations versus affine homogenization , 2007 .

[346]  Yasubumi Furuya,et al.  Design and Material Evaluation of Shape Memory Composites , 1996 .

[347]  E. Olevsky,et al.  Combustion synthesis/quasi-isostatic pressing of TiC0.7–NiTi cermets: microstructure and transformation characteristics , 2008 .

[348]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[349]  Minoru Taya,et al.  Design of an inchworm actuator based on a ferromagnetic shape memory alloy composite , 2012 .

[350]  D. Dunand,et al.  Shape-memory NiTi–Nb foams , 2009 .

[351]  J. Luo,et al.  Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering. , 2015, Materials science & engineering. C, Materials for biological applications.

[352]  Sung-Hoon Ahn,et al.  Numerical simulation of hybrid composite shape-memory alloy wire-embedded structures , 2011 .

[353]  Pei-Chun Lin,et al.  Dynamically programmable surface micro-wrinkles on PDMS-SMA composite , 2014 .

[354]  Y. Chemisky,et al.  Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation , 2011 .

[355]  Wael Zaki,et al.  Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling , 2011 .

[356]  D. Soares,et al.  Effect of sintering stage in NiTi short-fibre-reinforced aluminium–silicon composites interface properties , 2013 .

[357]  M. Elahinia,et al.  Manufacturing and processing of NiTi implants: A review , 2012 .

[358]  J. Ro,et al.  NITINOL-reinforced plates: Part III. Dynamic characteristics , 1995 .

[359]  A. Lewis,et al.  Using image-based computational modeling to study microstructure–yield correlations in metals , 2009 .

[360]  Damping characteristics of TiNi shape memory alloy wires reinforced epoxy resin , 2011 .

[361]  Yan Liu,et al.  Microstructure of multilayer interface in an Al matrix composite reinforced by TiNi fiber. , 2014, Micron.

[362]  L. Brinson,et al.  A three-dimensional phenomenological model for martensite reorientation in shape memory alloys , 2007 .

[363]  Jonathan C. Y. Chung,et al.  Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds. , 2011, Biomaterials.

[364]  L. Schultz,et al.  Polyester-bonded textured composites with single-crystalline shape memory Ni–Mn–Ga particles , 2007 .

[365]  Dimitris C. Lagoudas,et al.  Thermomechanical Characterization of Shape Memory Alloy Materials , 2008 .

[366]  Zhigao Huang,et al.  Electric field-modulated Hall resistivity and magnetization in magnetoelectric Ni–Mn–Co–Sn/PMN–PT laminate , 2011 .

[367]  Miinshiou Huang,et al.  A Multivariant model for single crystal shape memory alloy behavior , 1998 .

[368]  D. Lagoudas,et al.  Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys , 2009 .

[369]  J. Aboudi,et al.  Micromechanical investigation of plasticity–damage coupling of concrete reinforced by shape memory alloy fibers , 2008 .

[370]  I. Aaltio,et al.  DMA testing of Ni-Mn-Ga/polymer composites , 2009 .

[371]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[372]  Pullout resistance of deformed shape memory alloy fibers embedded in cement mortar , 2016 .

[373]  Yan Li,et al.  A Transforming Metal Nanocomposite with Large Elastic Strain, Low Modulus, and High Strength , 2013, Science.

[374]  Travis L. Turner,et al.  Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites , 2006 .

[375]  M. Ashby,et al.  Designing hybrid materials , 2003 .

[376]  M. Sadighi,et al.  Vibration analysis of thermally buckled SMA hybrid composite sandwich plate , 2015 .

[377]  James G. Boyd,et al.  A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material , 1996 .

[378]  A. Maffezzoli,et al.  Low-velocity impact response in composite plates embedding shape memory alloy wires , 2012 .

[379]  I. Karaman,et al.  Thermo-mechanical Response and Damping Behavior of Shape Memory Alloy–MAX Phase Composites , 2014, Metallurgical and Materials Transactions A.

[380]  Dimitris C. Lagoudas,et al.  A stochastic thermodynamic model for the gradual thermal transformation of SMA polycrystals , 1997 .

[381]  J. van Humbeeck,et al.  High Temperature Shape Memory Alloys Problems and Prospects , 2006 .

[382]  Kenichi Hamada,et al.  Processing of TiNi SMA fiber reinforced AZ31 Mg alloy matrix composite by pulsed current hot pressing , 2004 .

[383]  J. Schrooten,et al.  Thermomechanical properties of TiNiCu12 wire reinforced Kevlar/epoxy composites , 2005 .

[384]  S. Priya,et al.  A bio-inspired shape memory alloy composite (BISMAC) actuator , 2010 .

[385]  Heat transfer in shape memory alloy thin films , 2014 .

[386]  Ergun Akleman,et al.  Towards building smart self-folding structures , 2013, Comput. Graph..

[387]  Dimitris C. Lagoudas,et al.  Elastoplastic behavior of metal matrix composites based on incremental plasticity and the Mori-Tanaka averaging scheme , 1991 .

[388]  A. Baz,et al.  Optimal vibration control of NITINOL-reinforced composites , 1994 .

[389]  S. Yoneyama,et al.  Local Strain Distribution Arising in Shape Memory Alloy Composite Subjected to Thermal Loading , 2006 .

[390]  E. Patoor,et al.  Calculation of Pseudoelastic Elements Using a Non-Symmetrical Thermomechanical Transformation Criterion and Associated Rule , 1998 .

[391]  J. Juan,et al.  Composites with ultra high damping capacity based on powder metallurgy shape memory alloys , 2009 .

[392]  Xueyuan Feng,et al.  Improved shape memory composites combined with TiNi wire and shape memory epoxy , 2013 .

[393]  H. Maier,et al.  On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys , 2007 .

[394]  James G. Boyd,et al.  Micromechanics of Active Composites With SMA Fibers , 1994 .

[395]  G. Eggeler,et al.  High porosity and high-strength porous NiTi shape memory alloys with controllable pore characteristics , 2009 .

[396]  Nancy R. Sottos,et al.  Influence of adhesion on micromechanical behavior of SMA composites , 1995, Smart Structures.

[397]  J. Aboudi,et al.  Thermomechanically Coupled Micromechanical Analysis of Shape Memory Alloy Composites Undergoing Transformation Induced Plasticity , 2009 .

[398]  M. Cherkaoui,et al.  Fundamentals of Micromechanics of Solids , 2006 .

[399]  Rolf Sandström,et al.  New modelling of the B2 phase and its associated martensitic transformation in the Ti-Ni system , 1999 .

[400]  Francesco Ciampa,et al.  Multifunctional SMArt composite material for in situ NDT/SHM and de-icing , 2012 .

[401]  D. Dunand,et al.  Shape-memory NiTi with two-dimensional networks of micro-channels. , 2011, Acta biomaterialia.

[402]  J. Ro,et al.  Thermo-dynamic characteristics of nitinol-reinforced composite beams , 1992 .

[403]  David C. Dunand,et al.  NiTi with 3D-interconnected microchannels produced by liquid phase sintering and electrochemical dissolution of steel tubes , 2014, Journal of Materials Processing Technology.

[404]  Travis L. Turner,et al.  Analysis of SMA Hybrid Composite Structures in MSC.Nastran and ABAQUS , 2007 .

[405]  Etienne Patoor,et al.  Parameter identification of a thermodynamic model for superelastic shape memory alloys using analytical calculation of the sensitivity matrix , 2014 .

[406]  A. Heckmann,et al.  Structural and functional fatigue of NiTi shape memory alloys , 2004 .

[407]  Hu Ran Liu The Design of the Fly Wheel of the Shaper Machine Tool According to the Maximum and Minimum Angular Velocity , 2011 .

[408]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[409]  Bassem O Andrawes,et al.  Experimental flexural behavior of SMA-FRP reinforced concrete beam , 2013 .

[410]  Nancy R. Sottos,et al.  Local displacements and load transfer in shape memory alloy composites , 1997 .

[411]  N. Bilger,et al.  Mean-field homogenization of elasto-viscoplastic composites based on a general incrementally affine linearization method , 2010 .

[412]  I. Karaman,et al.  Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy , 2008 .

[413]  Stéphane Roux,et al.  Voxel-Scale Digital Volume Correlation , 2011 .

[414]  Ralph C. Smith,et al.  Quantification of parameter and model uncertainty for shape memory alloy bending actuators , 2014 .

[415]  A. Zafar,et al.  Incremental dynamic analysis of concrete moment resisting frames reinforced with shape memory composite bars , 2012 .

[416]  Shengyou Yang,et al.  Temperature variation of a NiTi wire considering the effects of test machine grips , 2015 .

[417]  Y. Bansal,et al.  Micromechanics of spatially uniform heterogeneous media: A critical review and emerging approaches , 2009 .

[418]  Daniel J. Inman,et al.  Shape Memory Alloy Hybrid Composite Plates for Shape and Stiffness Control , 2008 .

[419]  D. Dunand,et al.  Texture and training of magnetic shape memory foam , 2013 .

[420]  S. K. Sadrnezhaad,et al.  Phase transformation behavior of porous NiTi alloy fabricated by powder metallurgical method , 2009 .

[421]  S.M.R. Khalili,et al.  Dynamic Response of Smart Hybrid Composite Plate Subjected to Low-Velocity Impact , 2007 .

[422]  B. Jang,et al.  Influence of stacking angle of carbon fibers on fracture behavior of TiNi fiber impregnated CFRP composites , 2006 .

[423]  B. Yan,et al.  Mg alloy matrix composite reinforced with TiNi continuous fiber prepared by ball-milling/hot-pressing , 2005 .

[424]  Craig A. Rogers,et al.  Modeling of shape memory alloy hybrid composites for structural acoustic control , 1991 .

[425]  L. C. Brinson,et al.  Computational modeling of porous shape memory alloys , 2008 .

[426]  Eric L. Vandygriff,et al.  Processing and Characterization of NiTi Porous SMA by Elevated Pressure Sintering , 2002 .

[427]  M. Taya,et al.  Design of ferromagnetic shape memory alloy composite made of Fe and TiNi particles , 2007 .

[428]  G. Hu,et al.  Stress transfer for a SMA fiber pulled out from an elastic matrix and related bridging effect , 2005 .

[429]  L. Schultz,et al.  Reversible Magnetic Field Induced Strain in Ni2MnGa‐Polymer‐Composites , 2012 .

[430]  C. Rogers,et al.  Nitinol actuator to host composite interfacial adhesion in adaptive hybrid composites , 1992 .

[431]  L. Cui,et al.  Synthesis of TiC/NiTi composite powders in molten salt and their sintering , 2008 .

[432]  I. Karaman,et al.  Effect of precipitation on the microstructure and the shape memory response of the Ni50.3Ti29.7Zr20 high temperature shape memory alloy , 2013 .

[433]  Dimitris C. Lagoudas,et al.  Active flexible rods with embedded SMA fibers , 1992 .

[434]  I. Karaman,et al.  Phase and morphology evolution in high-temperature Ti3SiC2–NiTi diffusion-bonded joints , 2011 .

[435]  A. Baz,et al.  Torsional stiffness of NITINOL-reinforced composite drive shafts , 1993 .

[436]  Pedro Ponte Castañeda,et al.  Variational Estimates for the Effective Response of Shape Memory Alloy Actuated Fiber Composites , 2002 .

[437]  Bingyun Li,et al.  Porous NiTi alloy prepared from elemental powder sintering , 1998 .

[438]  S. Miyazaki,et al.  Shape memory materials and hybrid composites for smart systems: Part II Shape-memory hybrid composites , 1998 .

[439]  Jialu Wu,et al.  Thermal stresses in a macroscopic graphite particulates reinforced CuAlMn shape memory alloy studied by internal friction , 2005 .

[440]  H. Chan,et al.  Effect of phase transformation on the converse magnetoelectric properties of a heterostructure of Ni49.2Mn29.6Ga21.2 and 0.7PbMg1/3Nb2/3O3-0.3PbTiO3 crystals , 2010 .

[441]  S. Kalidindi,et al.  Estimating the response of polycrystalline materials using sets of weighted statistical volume elements , 2012 .

[442]  H. Tobushi,et al.  Fabrication and Two-Way Deformation of Shape Memory Composite with SMA and SMP , 2010 .

[443]  S. Calloch,et al.  A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings , 2004 .

[444]  Toshiaki Natsuki,et al.  Stiffness and vibration characteristics of SMA/ER3 composites with shape memory alloy short fibers , 2007 .

[445]  Dimitris C. Lagoudas,et al.  Modeling of the Thermomechanical Response of Active Laminates with SMA Strips Using the Layerwise Finite Element Method , 1997 .

[446]  H. Tobushi,et al.  Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads , 1995 .

[447]  G. Eggeler,et al.  Polymer/NiTi‐composites: Fundamental Aspects, Processing and Properties , 2005 .

[448]  Young-Soo Chung,et al.  Pullout resistance of straight NiTi shape memory alloy fibers in cement mortar after cold drawing and heat treatment , 2014 .

[449]  M. Meo,et al.  Mechanical response of shape memory alloy–based hybrid composite subjected to low-velocity impacts , 2015 .

[450]  S. White,et al.  Thermomechanical Response of SMA Composite Beams with Embedded Nitinol Wires in an Epoxy Matrix , 1998 .

[451]  Tarak Ben Zineb,et al.  Micromechanical analysis of precipitate effects on shape memory alloys behaviour , 2008 .

[452]  Javier Segurado,et al.  Computational micromechanics of composites: The effect of particle spatial distribution , 2006 .

[453]  C. Biffi,et al.  Simulated and Experimental Damping Properties of a SMA/Fiber Glass Laminated Composite , 2011, Journal of Materials Engineering and Performance.

[454]  James G. Boyd,et al.  Thermomechanical Response of Shape Memory Composites , 1993, Smart Structures.

[455]  Peter Müllner,et al.  Size Effects on Magnetic Actuation in Ni‐Mn‐Ga Shape‐Memory Alloys , 2011, Advanced materials.

[456]  Chris R. Fuller,et al.  Acoustic transmission and radiation analysis of adaptive shape-memory alloy reinforced laminated plates , 1991 .

[457]  H. Tam,et al.  Structural health monitoring of an asymmetrical SMA reinforced composite using embedded FBG sensors , 2013 .

[458]  Peter Lloyd,et al.  Design, manufacture and evaluation of bending behaviour of composite beams embedded with SMA wires , 2009 .

[459]  Benedikt Kohlhaas,et al.  An $$\hbox {FE}^{2}$$FE2 model for the analysis of shape memory alloy fiber-composites , 2015 .

[460]  Wendy C. Crone,et al.  Improved adhesion between nickel -titanium shape memory alloy and a polymer matrix via silane coupling agents , 2004 .

[461]  Véronique Michaud,et al.  Fatigue Response of Solvent-Based Self-Healing Smart Materials , 2014 .

[462]  Yong Liu,et al.  Local strain matching between Nb nanowires and a phase transforming NiTi matrix in an in-situ composite , 2014 .

[463]  C. Galiotis,et al.  Stress generation by shape memory alloy wires embedded in polymer composites , 2007 .

[464]  Dimitris C. Lagoudas,et al.  Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part II: porous SMA response , 2004 .

[465]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[466]  Nancy R. Sottos,et al.  Computational Modeling and Design of Actively-Cooled Microvascular Materials , 2012 .

[467]  Tarik Aydoğmuş,et al.  Phase Transformation Behavior of Porous TiNi Alloys Produced by Powder Metallurgy Using Magnesium as a Space Holder , 2011 .

[468]  C. Cui,et al.  Effects of aging on the structure and damping behaviors of a novel porous CuAlMn shape memory alloy fabricated by sintering–dissolution method , 2014 .

[469]  Yufeng Zheng,et al.  Magnetic field induced strain and damping behavior of Ni–Mn–Ga particles/epoxy resin composite , 2014 .

[470]  Dimitris C. Lagoudas,et al.  Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization , 2009 .

[471]  B Piotrowski,et al.  A finite element–based numerical tool for Ni47Ti44Nb9 SMA structures design: Application to tightening rings , 2012 .

[472]  Dimitris C. Lagoudas,et al.  Shape memory alloys, Part II: Modeling of polycrystals , 2006 .