Maximal Ferrers Diagram Codes: Constructions and Genericity Considerations

This paper investigates the construction of rank-metric codes with specified Ferrers diagram shapes. These codes play a role in the multilevel construction for subspace codes. A conjecture from 2009 provides an upper bound for the dimension of a rank-metric code with given specified Ferrers diagram shape and rank distance. While the conjecture in its generality is wide open, several cases have been established in the literature. This paper contributes further cases of Ferrers diagrams and ranks for which the conjecture holds true. In addition, the proportion of maximal Ferrers diagram codes within the space of all rank-metric codes with the same shape and dimension is investigated. Special attention is being paid to MRD codes. It is shown that for growing field size the limiting proportion depends highly on the Ferrers diagram. For instance, for <inline-formula> <tex-math notation="LaTeX">$[m\times 2]$ </tex-math></inline-formula>-MRD codes with rank 2 this limiting proportion is close to <inline-formula> <tex-math notation="LaTeX">$1/e$ </tex-math></inline-formula>.

[1]  Kent E. Morrison Integer sequences and matrices over finite fields , 2006 .

[2]  Tao Feng,et al.  Constructions for Optimal Ferrers Diagram Rank-Metric Codes , 2018, IEEE Transactions on Information Theory.

[3]  Alberto Ravagnani,et al.  Subspace codes from Ferrers diagrams , 2014, ArXiv.

[4]  Ernst M. Gabidulin,et al.  Rank subcodes in multicomponent network coding , 2013, Probl. Inf. Transm..

[5]  J. Antrobus,et al.  The State of Lexicodes and Ferrers Diagram Rank-Metric Codes , 2019 .

[6]  Heide Gluesing-Luerssen,et al.  Construction of subspace codes through linkage , 2015, Adv. Math. Commun..

[7]  Eli Ben-Sasson,et al.  Subspace Polynomials and Cyclic Subspace Codes , 2014, IEEE Transactions on Information Theory.

[8]  R. Koetter,et al.  The benefits of coding over routing in a randomized setting , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[9]  Frank R. Kschischang,et al.  A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[10]  Joachim Rosenthal,et al.  Cyclic Orbit Codes , 2011, IEEE Transactions on Information Theory.

[11]  Vladimir Sidorenko,et al.  Row reduction applied to decoding of rank-metric and subspace codes , 2015, Des. Codes Cryptogr..

[12]  Eimear Byrne,et al.  Partition-Balanced Families of Codes and Asymptotic Enumeration in Coding Theory , 2018, J. Comb. Theory A.

[13]  Alexander Vardy,et al.  Algebraic List-Decoding of Subspace Codes , 2013, IEEE Transactions on Information Theory.

[14]  Alfred Wassermann,et al.  Algebraic structures of MRD codes , 2015, Adv. Math. Commun..

[15]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[16]  Heide Gluesing-Luerssen,et al.  Cyclic orbit codes and stabilizer subfields , 2015, Adv. Math. Commun..

[17]  Sascha Kurz,et al.  Coset Construction for Subspace Codes , 2015, IEEE Transactions on Information Theory.

[18]  Natalia Silberstein,et al.  Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams , 2008, IEEE Transactions on Information Theory.

[19]  Edoardo Ballico,et al.  Linear subspaces of matrices associated to a Ferrers diagram and with a prescribed lower bound for their rank , 2015 .

[20]  Frank R. Kschischang,et al.  Fast encoding and decoding of Gabidulin codes , 2009, 2009 IEEE International Symposium on Information Theory.

[21]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[22]  Heide Gluesing-Luerssen,et al.  On the Sparseness of Certain MRD Codes , 2019, ArXiv.

[23]  Vladimir Sidorenko,et al.  Fast decoding of Gabidulin codes , 2011, Des. Codes Cryptogr..

[24]  Baochun Li,et al.  How Practical is Network Coding? , 2006, 200614th IEEE International Workshop on Quality of Service.

[25]  Alessandro Neri,et al.  On the genericity of maximum rank distance and Gabidulin codes , 2016, Des. Codes Cryptogr..

[26]  Ron M. Roth,et al.  Author's Reply to Comments on 'Maximum-rank array codes and their application to crisscross error correction' , 1991, IEEE Trans. Inf. Theory.

[27]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[28]  Alberto Ravagnani,et al.  Partial spreads in random network coding , 2014, Finite Fields Their Appl..

[29]  Richard Stong,et al.  Some asymptotic results on finite vector spaces , 1988 .

[30]  Giuseppe Marino,et al.  A new family of MRD-codes , 2017, Linear Algebra and its Applications.

[31]  K. Jain,et al.  Practical Network Coding , 2003 .

[32]  Martin Bossert,et al.  Decoding of random network codes , 2010, Probl. Inf. Transm..

[33]  Alberto Ravagnani,et al.  Optimal Ferrers Diagram Rank-Metric Codes , 2014, IEEE Transactions on Information Theory.

[34]  John Sheekey,et al.  A new family of linear maximum rank distance codes , 2015, Adv. Math. Commun..

[35]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[36]  Natalia Silberstein,et al.  Subspace Codes Based on Graph Matchings, Ferrers Diagrams, and Pending Blocks , 2014, IEEE Transactions on Information Theory.