Maximal Ferrers Diagram Codes: Constructions and Genericity Considerations
暂无分享,去创建一个
[1] Kent E. Morrison. Integer sequences and matrices over finite fields , 2006 .
[2] Tao Feng,et al. Constructions for Optimal Ferrers Diagram Rank-Metric Codes , 2018, IEEE Transactions on Information Theory.
[3] Alberto Ravagnani,et al. Subspace codes from Ferrers diagrams , 2014, ArXiv.
[4] Ernst M. Gabidulin,et al. Rank subcodes in multicomponent network coding , 2013, Probl. Inf. Transm..
[5] J. Antrobus,et al. The State of Lexicodes and Ferrers Diagram Rank-Metric Codes , 2019 .
[6] Heide Gluesing-Luerssen,et al. Construction of subspace codes through linkage , 2015, Adv. Math. Commun..
[7] Eli Ben-Sasson,et al. Subspace Polynomials and Cyclic Subspace Codes , 2014, IEEE Transactions on Information Theory.
[8] R. Koetter,et al. The benefits of coding over routing in a randomized setting , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..
[9] Frank R. Kschischang,et al. A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.
[10] Joachim Rosenthal,et al. Cyclic Orbit Codes , 2011, IEEE Transactions on Information Theory.
[11] Vladimir Sidorenko,et al. Row reduction applied to decoding of rank-metric and subspace codes , 2015, Des. Codes Cryptogr..
[12] Eimear Byrne,et al. Partition-Balanced Families of Codes and Asymptotic Enumeration in Coding Theory , 2018, J. Comb. Theory A.
[13] Alexander Vardy,et al. Algebraic List-Decoding of Subspace Codes , 2013, IEEE Transactions on Information Theory.
[14] Alfred Wassermann,et al. Algebraic structures of MRD codes , 2015, Adv. Math. Commun..
[15] Philippe Delsarte,et al. Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.
[16] Heide Gluesing-Luerssen,et al. Cyclic orbit codes and stabilizer subfields , 2015, Adv. Math. Commun..
[17] Sascha Kurz,et al. Coset Construction for Subspace Codes , 2015, IEEE Transactions on Information Theory.
[18] Natalia Silberstein,et al. Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams , 2008, IEEE Transactions on Information Theory.
[19] Edoardo Ballico,et al. Linear subspaces of matrices associated to a Ferrers diagram and with a prescribed lower bound for their rank , 2015 .
[20] Frank R. Kschischang,et al. Fast encoding and decoding of Gabidulin codes , 2009, 2009 IEEE International Symposium on Information Theory.
[21] Richard Zippel,et al. Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.
[22] Heide Gluesing-Luerssen,et al. On the Sparseness of Certain MRD Codes , 2019, ArXiv.
[23] Vladimir Sidorenko,et al. Fast decoding of Gabidulin codes , 2011, Des. Codes Cryptogr..
[24] Baochun Li,et al. How Practical is Network Coding? , 2006, 200614th IEEE International Workshop on Quality of Service.
[25] Alessandro Neri,et al. On the genericity of maximum rank distance and Gabidulin codes , 2016, Des. Codes Cryptogr..
[26] Ron M. Roth,et al. Author's Reply to Comments on 'Maximum-rank array codes and their application to crisscross error correction' , 1991, IEEE Trans. Inf. Theory.
[27] Frank R. Kschischang,et al. Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.
[28] Alberto Ravagnani,et al. Partial spreads in random network coding , 2014, Finite Fields Their Appl..
[29] Richard Stong,et al. Some asymptotic results on finite vector spaces , 1988 .
[30] Giuseppe Marino,et al. A new family of MRD-codes , 2017, Linear Algebra and its Applications.
[31] K. Jain,et al. Practical Network Coding , 2003 .
[32] Martin Bossert,et al. Decoding of random network codes , 2010, Probl. Inf. Transm..
[33] Alberto Ravagnani,et al. Optimal Ferrers Diagram Rank-Metric Codes , 2014, IEEE Transactions on Information Theory.
[34] John Sheekey,et al. A new family of linear maximum rank distance codes , 2015, Adv. Math. Commun..
[35] Jacob T. Schwartz,et al. Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.
[36] Natalia Silberstein,et al. Subspace Codes Based on Graph Matchings, Ferrers Diagrams, and Pending Blocks , 2014, IEEE Transactions on Information Theory.