Semi-implicit scheme for treating radiation under M1 closure in general relativistic conservative fluid dynamics codes

A numerical scheme is described for including radiation in multi-dimensional generalrelativistic conservative fluid dynamics codes. In this met hod, a covariant form of the M1 closure scheme is used to close the radiation moments, and the radiative source terms are treated semi-implicitly in order to handle both optically t hin and optically thick regimes. The scheme has been implemented in a conservative general relativistic radiation hydrodynamics codeKORAL. The robustness of the code is demonstrated on a number of test problems, including radiative relativistic shock tubes, static radiation p ressure supported atmosphere, shadows, beams of light in curved spacetime, and radiative Bondi accretion. The advantages of M1 closure relative to other approaches such as Eddington closure and flux-limited di ffusion are discussed, and its limitations are also highlighted.

[1]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[2]  H. Ford,et al.  The bizarre spectrum of SS 433. , 1979 .

[3]  C. D. Levermore,et al.  Relating Eddington factors to flux limiters , 1984 .

[4]  P. Vitello Optically thick, time-dependent spherical accretion onto a black hole. I. Equations and numerical methods , 1984 .

[5]  John F. Hawley,et al.  A Numerical Study of Nonspherical Black Hole Accretion , 1984 .

[6]  Bruce Margon,et al.  Observations of SS 433 , 1984 .

[7]  D. Raine,et al.  Accretion power in astrophysics , 1985 .

[8]  J. Lasota,et al.  Slim Accretion Disks , 1988 .

[9]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[10]  Spherical accretion onto black holes : a complete analysis of stationary solutions , 1991 .

[11]  Ramesh Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994 .

[12]  Thermal equilibria of accretion disks , 1994, astro-ph/9409018.

[13]  R. Narayan,et al.  Advection dominated accretion: Underfed black holes and neutron stars , 1994, astro-ph/9411059.

[14]  Ramesh Narayan,et al.  Explaining the spectrum of Sagittarius A* with a model of an accreting black hole , 1995, Nature.

[15]  R. Narayan,et al.  Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991 , 1997 .

[16]  H. Huynh,et al.  Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping , 1997 .

[17]  Wei Cui,et al.  Spectral Transitions in Cygnus X-1 and Other Black Hole X-Ray Binaries , 1997, astro-ph/9711167.

[18]  B. Dubroca,et al.  Etude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif , 1999 .

[19]  Tsunefumi Mizuno,et al.  Slim-Disk Model for Ultraluminous X-Ray Sources , 2000, astro-ph/0011434.

[20]  M. Mouchet,et al.  Are quasars accreting at super-Eddington rates? , 2002, astro-ph/0203439.

[21]  Andrew King,et al.  Accretion Power in Astrophysics: Contents , 2002 .

[22]  J. Krolik,et al.  Magnetically Driven Accretion Flows in the Kerr Metric. I. Models and Overall Structure , 2003, astro-ph/0307260.

[23]  S. Mineshige,et al.  Spectral Energy Distribution in Supercritical Disk Accretion Flows through Photon-trapping Effects , 2003, astro-ph/0306546.

[24]  Michael L. Norman,et al.  Beyond Flux-Limited Diffusion: Parallel Algorithms for Multidimensional Radiation Hydrodynamics , 2003 .

[25]  Ramesh Narayan,et al.  Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A* , 2003, astro-ph/0304125.

[26]  Local Three-dimensional Simulations of Magnetorotational Instability in Radiation-dominated Accretion Disks , 2003, astro-ph/0304511.

[27]  L. Ho,et al.  Iron Emission in the z = 6.4 Quasar SDSS J114816.64+525150.3 , 2003, astro-ph/0308005.

[28]  E. Colbert,et al.  Intermediate - mass black holes , 2003 .

[29]  E. Meyer-Hofmeister,et al.  The formation of the coronal flow/ADAF , 2003, astro-ph/0303525.

[30]  Charles F. Gammie,et al.  HARM: A NUMERICAL SCHEME FOR GENERAL RELATIVISTIC MAGNETOHYDRODYNAMICS , 2003 .

[31]  T. Belloni,et al.  GRS 1915+105 and the Disc-Jet Coupling in Accreting Black Hole Systems , 2004 .

[32]  J. Brinkmann,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. IV. Discovery of Seven Additional Quasars , 2004, astro-ph/0405138.

[33]  Imaging of sdss z > 6 quasar fields : Gravitational lensing, companion galaxies, and the host dark matter halos , 2005, astro-ph/0503202.

[34]  Santa Barbara,et al.  Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement , 2005, astro-ph/0509254.

[35]  K. Ohsuga Two-dimensional Radiation-Hydrodynamic Model for Limit-Cycle Oscillations of Luminous Accretion Disks , 2005, astro-ph/0512178.

[36]  Ronald A. Remillard,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[37]  INFN,et al.  The exact solution of the Riemann problem in relativistic magnetohydrodynamics , 2005, Journal of Fluid Mechanics.

[38]  C. Gammie,et al.  Primitive Variable Solvers for Conservative General Relativistic Magnetohydrodynamics , 2005, astro-ph/0512420.

[39]  Light Curves from an MHD Simulation of a Black Hole Accretion Disk , 2006, astro-ph/0606615.

[40]  Richard I. Klein,et al.  Equations and Algorithms for Mixed-frame Flux-limited Diffusion Radiation Hydrodynamics , 2006 .

[41]  O. Blaes,et al.  Surface Structure in an Accretion Disk Annulus with Comparable Radiation and Gas Pressure , 2007, 0705.0314.

[42]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[43]  P. Huynh,et al.  HERACLES: a three-dimensional radiation hydrodynamics code , 2007 .

[44]  Aya Kubota,et al.  Modelling the behaviour of accretion flows in X-ray binaries , 2007, 0708.0148.

[45]  O. Blaes,et al.  Thermodynamics of an Accretion Disk Annulus with Comparable Radiation and Gas Pressure , 2007, 0705.0305.

[46]  A. Fabian,et al.  Broad Iron-Kα Emission Lines as a Diagnostic of Black Hole Spin , 2007, 0711.4158.

[47]  S. Shapiro,et al.  Relativistic Radiation Magnetohydrodynamics in Dynamical Spacetimes , 2008, 0802.3210.

[48]  A. Tchekhovskoy,et al.  Three-Dimensional Simulations of Magnetized Thin Accretion Disks around Black Holes: Stress in the Plunging Region , 2008, 0808.2860.

[49]  B R U N O G I A C O M A Z Z O,et al.  Under consideration for publication in J. Fluid Mech. 1 The Exact Solution of the Riemann Problem in Relativistic MHD , 2008 .

[50]  A. Sa̧dowski SLIM DISKS AROUND KERR BLACK HOLES REVISITED , 2009, 0906.0355.

[51]  O. Blaes,et al.  RADIATION-DOMINATED DISKS ARE THERMALLY STABLE , 2008, 0809.1708.

[52]  O. Blaes,et al.  TURBULENT STRESSES IN LOCAL SIMULATIONS OF RADIATION-DOMINATED ACCRETION DISKS, AND THE POSSIBILITY OF THE LIGHTMAN–EARDLEY INSTABILITY , 2009, 0908.1117.

[53]  D. Meier,et al.  GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF THE HARD STATE AS A MAGNETICALLY DOMINATED ACCRETION FLOW , 2008, 0810.1082.

[54]  M. Mori,et al.  Global Radiation-Magnetohydrodynamic Simulations of Black-Hole Accretion Flow and Outflow: Unified Model of Three States , 2009, 0903.5364.

[55]  R. McLure,et al.  THE CANADA–FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6 , 2009, 0912.0281.

[56]  A. Tchekhovskoy,et al.  Simulations of magnetized discs around black holes: Effects of black hole spin, disc thickness and magnetic field geometry , 2010, 1003.0966.

[57]  O. Blaes,et al.  DISSIPATION AND VERTICAL ENERGY TRANSPORT IN RADIATION-DOMINATED ACCRETION DISKS , 2011, 1103.5052.

[58]  J. Krolik,et al.  RADIATIVE EFFICIENCY AND THERMAL SPECTRUM OF ACCRETION ONTO SCHWARZSCHILD BLACK HOLES , 2011, 1105.2825.

[59]  L. Rezzolla,et al.  General relativistic radiation hydrodynamics of accretion flows - I. Bondi-Hoyle accretion , 2011, 1105.5615.

[60]  R. Narayan,et al.  Testing Slim-Disk Models on the Thermal Spectra of LMC X-3 , 2011, 1106.0009.

[61]  Guy Perrin,et al.  GYOTO: a new general relativistic ray-tracing code , 2011, 1109.4769.

[62]  S. Mineshige,et al.  GLOBAL STRUCTURE OF THREE DISTINCT ACCRETION FLOWS AND OUTFLOWS AROUND BLACK HOLES FROM TWO-DIMENSIONAL RADIATION-MAGNETOHYDRODYNAMIC SIMULATIONS , 2011, 1105.5474.

[63]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[64]  J. Orosz,et al.  Measuring the spins of accreting black holes , 2011, 1101.0811.

[65]  James M. Stone,et al.  A RADIATION TRANSFER SOLVER FOR ATHENA USING SHORT CHARACTERISTICS , 2012, 1201.2222.

[66]  Olindo Zanotti,et al.  General relativistic radiation hydrodynamics of accretion flows – II. Treating stiff source terms and exploring physical limitations , 2012, 1206.6662.

[67]  Princeton,et al.  General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes , 2012, 1201.4163.

[68]  James M. Stone,et al.  A GODUNOV METHOD FOR MULTIDIMENSIONAL RADIATION MAGNETOHYDRODYNAMICS BASED ON A VARIABLE EDDINGTON TENSOR , 2012, 1201.2223.

[69]  R. Narayan,et al.  GRMHD simulations of magnetized advection‐dominated accretion on a non‐spinning black hole: role of outflows , 2012, 1206.1213.

[70]  A. C. Fabian,et al.  Observational Evidence of AGN Feedback , 2012, 1204.4114.

[71]  Stanford,et al.  Prograde and retrograde black holes: whose jet is more powerful? , 2012, 1201.4385.

[72]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[73]  P. Anninos,et al.  NUMERICAL SIMULATIONS OF OPTICALLY THICK ACCRETION ONTO A BLACK HOLE. I. SPHERICAL CASE , 2012, 1204.5538.

[74]  General relativistic magnetohydrodynamic simulations of accretion on to Sgr A*: how important are radiative losses? , 2012 .

[75]  J. Dexter,et al.  GRMHD simulations of accretion onto Sgr A*: How important are radiative losses? , 2012, 1206.3976.

[76]  Takashi Yoshida,et al.  COMPTONIZED PHOTON SPECTRA OF SUPERCRITICAL BLACK HOLE ACCRETION FLOWS WITH APPLICATION TO ULTRALUMINOUS X-RAY SOURCES , 2012 .

[77]  R. Penna,et al.  SAGITTARIUS A* ACCRETION FLOW AND BLACK HOLE PARAMETERS FROM GENERAL RELATIVISTIC DYNAMICAL AND POLARIZED RADIATIVE MODELING , 2010, 1007.4832.

[78]  Y. Sekiguchi,et al.  Radiation magnetohydrodynamics for black hole-torus system in full general relativity: A step toward physical simulation , 2012, 1206.5911.