On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom
暂无分享,去创建一个
[1] T. Kurtz,et al. Stochastic equations in infinite dimensions , 2006 .
[2] M. Freidlin. Some Remarks on the Smoluchowski–Kramers Approximation , 2004 .
[3] M. Ondreját,et al. Existence of global mild and strong solutions to stochastic hyperbolic evolution equations driven by a spatially homogeneous Wiener process , 2004 .
[4] Martin Hairer,et al. Periodic Homogenization for Hypoelliptic Diffusions , 2004, math-ph/0403003.
[5] Andrew M. Stuart,et al. White Noise Limits for Inertial Particles in a Random Field , 2003, Multiscale Model. Simul..
[6] V. Barbu,et al. The Stochastic Nonlinear Damped Wave Equation , 2002 .
[7] S. Peszat. The Cauchy problem for a nonlinear stochastic wave equation in any dimension , 2002 .
[8] Giuseppe Da Prato,et al. Second Order Partial Differential Equations in Hilbert Spaces: Bibliography , 2002 .
[9] A. Millet,et al. On a nonlinear stochastic wave equation in the plane: existence and uniqueness of the solution , 2001 .
[10] J. Zabczyk,et al. Nonlinear stochastic wave and heat equations , 2000 .
[11] A. Millet,et al. A stochastic wave equation in two space dimension : Smoothness of the law , 1999 .
[12] István Gyöngy,et al. Existence and uniqueness results for semilinear stochastic partial differential equations , 1998 .
[13] K. Elworthy. ERGODICITY FOR INFINITE DIMENSIONAL SYSTEMS (London Mathematical Society Lecture Note Series 229) By G. Da Prato and J. Zabczyk: 339 pp., £29.95, LMS Members' price £22.47, ISBN 0 521 57900 7 (Cambridge University Press, 1996). , 1997 .
[14] I. Gyöngy,et al. Existence of strong solutions for Itô's stochastic equations via approximations , 1996 .
[15] J. Zabczyk,et al. Ergodicity for Infinite Dimensional Systems: Invariant measures for stochastic evolution equations , 1996 .
[16] Boris Rozovskii,et al. On asymptotic properties of maximum likelihood estimators for parabolic stochastic PDE's , 1995 .
[17] M. Freidlin. Random perturbations of reaction-difiusion equations: the quasi de-terministic approximation , 1988 .
[18] R. Datko. Extending a theorem of A. M. Liapunov to Hilbert space , 1970 .
[19] H. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .
[20] N. Frangos,et al. The stochastic wave equation in two spatial dimensions , 1998 .
[21] S. Mitter,et al. Representation and Control of Infinite Dimensional Systems , 1992 .
[22] J. Lions. Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal , 1973 .
[23] M. Smoluchowski,et al. Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen , 1916 .