On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom

[1]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[2]  M. Freidlin Some Remarks on the Smoluchowski–Kramers Approximation , 2004 .

[3]  M. Ondreját,et al.  Existence of global mild and strong solutions to stochastic hyperbolic evolution equations driven by a spatially homogeneous Wiener process , 2004 .

[4]  Martin Hairer,et al.  Periodic Homogenization for Hypoelliptic Diffusions , 2004, math-ph/0403003.

[5]  Andrew M. Stuart,et al.  White Noise Limits for Inertial Particles in a Random Field , 2003, Multiscale Model. Simul..

[6]  V. Barbu,et al.  The Stochastic Nonlinear Damped Wave Equation , 2002 .

[7]  S. Peszat The Cauchy problem for a nonlinear stochastic wave equation in any dimension , 2002 .

[8]  Giuseppe Da Prato,et al.  Second Order Partial Differential Equations in Hilbert Spaces: Bibliography , 2002 .

[9]  A. Millet,et al.  On a nonlinear stochastic wave equation in the plane: existence and uniqueness of the solution , 2001 .

[10]  J. Zabczyk,et al.  Nonlinear stochastic wave and heat equations , 2000 .

[11]  A. Millet,et al.  A stochastic wave equation in two space dimension : Smoothness of the law , 1999 .

[12]  István Gyöngy,et al.  Existence and uniqueness results for semilinear stochastic partial differential equations , 1998 .

[13]  K. Elworthy ERGODICITY FOR INFINITE DIMENSIONAL SYSTEMS (London Mathematical Society Lecture Note Series 229) By G. Da Prato and J. Zabczyk: 339 pp., £29.95, LMS Members' price £22.47, ISBN 0 521 57900 7 (Cambridge University Press, 1996). , 1997 .

[14]  I. Gyöngy,et al.  Existence of strong solutions for Itô's stochastic equations via approximations , 1996 .

[15]  J. Zabczyk,et al.  Ergodicity for Infinite Dimensional Systems: Invariant measures for stochastic evolution equations , 1996 .

[16]  Boris Rozovskii,et al.  On asymptotic properties of maximum likelihood estimators for parabolic stochastic PDE's , 1995 .

[17]  M. Freidlin Random perturbations of reaction-difiusion equations: the quasi de-terministic approximation , 1988 .

[18]  R. Datko Extending a theorem of A. M. Liapunov to Hilbert space , 1970 .

[19]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[20]  N. Frangos,et al.  The stochastic wave equation in two spatial dimensions , 1998 .

[21]  S. Mitter,et al.  Representation and Control of Infinite Dimensional Systems , 1992 .

[22]  J. Lions Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal , 1973 .

[23]  M. Smoluchowski,et al.  Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen , 1916 .