The temporal structure of transient ON/OFF ganglion cell responses and its relation to intra-retinal processing

A subpopulation of transient ON/OFF ganglion cells in the turtle retina transmits changes in stimulus intensity as series of distinct spike events. The temporal structure of these event sequences depends systematically on the stimulus and thus carries information about the preceding intensity change. To study the spike events' intra-retinal origins, we performed extracellular ganglion cell recordings and simultaneous intracellular recordings from horizontal and amacrine cells. Based on these data, we developed a computational retina model, reproducing spike event patterns with realistic intensity dependence under various experimental conditions. The model's main features are negative feedback from sustained amacrine onto bipolar cells, and a two-step cascade of ganglion cell suppression via a slow and a fast transient amacrine cell. Pharmacologically blocking glycinergic transmission results in disappearance of the spike event sequence, an effect predicted by the model if a single connection, namely suppression of the fast by the slow transient amacrine cell, is weakened. We suggest that the slow transient amacrine cell is glycinergic, whereas the other types release GABA. Thus, the interplay of amacrine cell mediated inhibition is likely to induce distinct temporal structure in ganglion cell responses, forming the basis for a temporal code.

[1]  Helga Kolb,et al.  The organization of the turtle inner retina. II. Analysis of color‐coded and directionally selective cells , 1995, The Journal of comparative neurology.

[2]  Matthias H. Hennig,et al.  A biophysically realistic simulation of the vertebrate retina , 2001, Neurocomputing.

[3]  P D Lukasiewicz,et al.  Desensitizing glutamate receptors shape excitatory synaptic inputs to tiger salamander retinal ganglion cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  James R Dearworth,et al.  Multiplied functions unify shapes of ganglion-cell receptive fields in retina of turtle. , 2002, Journal of vision.

[5]  F. G. Worden,et al.  The neurosciences : fourth study program , 1979 .

[6]  R. Reid,et al.  Predicting Every Spike A Model for the Responses of Visual Neurons , 2001, Neuron.

[7]  F. Werblin,et al.  Neural interactions mediating the detection of motion in the retina of the tiger salamander , 1988, Visual Neuroscience.

[8]  Michael J. Berry,et al.  Redundancy in the Population Code of the Retina , 2005, Neuron.

[9]  F. Werblin,et al.  Amacrine cell interactions underlying the response to change in the tiger salamander retina , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Hiroko M. Sakai,et al.  Chapter 6 Neuron network in catfish retina: 1968–1987 , 1988 .

[11]  B Ehinger,et al.  Synaptic connections involving immunoreactive glycine receptors in the turtle retina , 1993, Visual Neuroscience.

[12]  F S Werblin,et al.  The spatial distribution of excitatory and inhibitory inputs to ganglion cell dendrites in the tiger salamander retina , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[14]  Matthias H Hennig,et al.  The Influence of Different Retinal Subcircuits on the Nonlinearity of Ganglion Cell Behavior , 2002, The Journal of Neuroscience.

[15]  D B Bowling,et al.  Light responses of ganglion cells in the retina of the turtle , 1980, The Journal of physiology.

[16]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[17]  F. Werblin,et al.  Response to Change Is Facilitated by a Three-Neuron Disinhibitory Pathway in the Tiger Salamander Retina , 1998, The Journal of Neuroscience.

[18]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[19]  P. Marchiafava,et al.  The photoresponses of structurally identified amacrine cells in the turtle retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[20]  William H. Press,et al.  Numerical recipes in C , 2002 .

[21]  Ido Perlman,et al.  Light adaptation in luminosity horizontal cells in the turtle retina Role of cellular coupling , 1984, Vision Research.

[22]  H. Kolb,et al.  Neural circuitry and light responses of the dopamine amacrine cell of the turtle retina. , 1997, Molecular vision.

[23]  P. Gaudiano Simulations of X and Y retinal ganglion cell behavior with a nonlinear push-pull model of spatiotemporal retinal processing , 1994, Vision Research.

[24]  H. Kolb,et al.  The organization of the turtle inner retina. I. ON‐ and OFF‐center pathways , 1995, The Journal of comparative neurology.

[25]  Michael J. Berry,et al.  Refractoriness and Neural Precision , 1997, The Journal of Neuroscience.

[26]  J. Victor The dynamics of the cat retinal X cell centre. , 1987, The Journal of physiology.

[27]  H M Sakai,et al.  Signal transmission in the catfish retina. V. Sensitivity and circuit. , 1987, Journal of neurophysiology.

[28]  A M Granda,et al.  Functional morphologies of retinal ganglion cells in the turtle , 1994, The Journal of comparative neurology.

[29]  E. A. Schwartz,et al.  Organization of on‐off cells in the retina of the turtle , 1973, The Journal of physiology.

[30]  R. Dacheux,et al.  Synaptic organization and ionic basis of on and off channels in mudpuppy retina. III. A model of ganglion cell receptive field organization based on chloride-free experiments , 1976, The Journal of general physiology.

[31]  J. Victor,et al.  Nature and precision of temporal coding in visual cortex: a metric-space analysis. , 1996, Journal of neurophysiology.

[32]  P. Marchiafava The responses of retinal ganglion cells to stationary and moving visual stimuli , 1979, Vision Research.

[33]  K Naka,et al.  Signal transmission in the catfish retina. I. Transmission in the outer retina. , 1985, Journal of neurophysiology.

[34]  R A Normann,et al.  Synaptic inputs to physiologically defined turtle retinal ganglion cells , 1991, Visual Neuroscience.

[35]  Adam Jacobs,et al.  How Neural Interactions Form Neural Responses in the Salamander Retina , 2004, Journal of Computational Neuroscience.

[36]  V. Hateren,et al.  Processing of natural time series of intensities by the visual system of the blowfly , 1997, Vision Research.

[37]  R. Masland Neuronal diversity in the retina , 2001, Current Opinion in Neurobiology.

[38]  Kwabena Boahen,et al.  Optic nerve signals in a neuromorphic chip I: Outer and inner retina models , 2004, IEEE Transactions on Biomedical Engineering.

[39]  H. Kolb,et al.  Organization of the inner plexiform layer of the turtle retina: An electron microscopic study , 1988, The Journal of comparative neurology.

[40]  Barry B. Lee,et al.  Processing of Natural Temporal Stimuli by Macaque Retinal Ganglion Cells , 2002, The Journal of Neuroscience.

[41]  K Naka,et al.  Neuron network in catfish retina. , 1985, Neuroscience research. Supplement : the official journal of the Japan Neuroscience Society.

[42]  Ralph J. Jensen,et al.  Ganglion cells and (dye-coupled) amacrine cells in the turtle retina that have possible synaptic connection , 1982, Brain Research.

[43]  T. Lamb,et al.  Visual transduction by rod and cone photoreceptors , 2004 .

[44]  J. Belgum,et al.  Strychnine blocks transient but not sustained inhibition in mudpuppy retinal ganglion cells. , 1984, The Journal of physiology.

[45]  K. Kratz,et al.  Relationship between response latency and amplitude for ganglion and geniculate X- and Y-cells in the cat. , 1991, The International journal of neuroscience.

[46]  J. McReynolds,et al.  Sustained synaptic input to ganglion cells of mudpuppy retina , 1982, The Journal of physiology.

[47]  R. Normann,et al.  The effects of background illumination on the photoresponses of red and green cones. , 1979, The Journal of physiology.

[48]  F S Werblin,et al.  Regenerative amacrine cell depolarization and formation of on‐off ganglion cell response. , 1977, The Journal of physiology.

[49]  Josef Ammermüller,et al.  Chapter 1 Neurotransmitter systems in the turtle retina , 1991 .

[50]  L. Dieterle,et al.  Flow Field Investigations on a large Delta Wing using LSI and PIV , 1999 .

[51]  H M Sakai,et al.  Signal transmission in the catfish retina. IV. Transmission to ganglion cells. , 1987, Journal of neurophysiology.

[52]  A M Granda,et al.  Classification of turtle retinal ganglion cells. , 1989, Journal of neurophysiology.

[53]  M. Meister,et al.  The Light Response of Retinal Ganglion Cells Is Truncated by a Displaced Amacrine Circuit , 1997, Neuron.

[54]  Frank Müller,et al.  Signaltransduktion in Sehzellen , 1998, Naturwissenschaften.

[55]  Richard H Masland,et al.  Extreme Diversity among Amacrine Cells: Implications for Function , 1998, Neuron.

[56]  M. Ariel,et al.  Rhythmicity in rabbit retinal ganglion cell responses , 1983, Vision Research.

[57]  H R Wilson,et al.  A neural model of foveal light adaptation and afterimage formation , 1997, Visual Neuroscience.

[58]  R A Normann,et al.  Signal transmission from red cones to horizontal cells in the turtle retina. , 1979, The Journal of physiology.

[59]  D. Puro The Retina. An Approachable Part of the Brain , 1988 .

[60]  Reinhard Eckhorn,et al.  Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex , 1990, Neural Computation.

[61]  J Toyoda,et al.  Bipolar-amacrine transmission in the carp retina. , 1973, Vision research.

[62]  H. Kolb,et al.  Functional architecture of the turtle retina , 1996, Progress in Retinal and Eye Research.

[63]  Michael J. Berry,et al.  Anticipation of moving stimuli by the retina , 1999, Nature.

[64]  O. Prospero-Garcia,et al.  Reliability of Spike Timing in Neocortical Neurons , 1995 .

[65]  G. Awatramani,et al.  Origin of Transient and Sustained Responses in Ganglion Cells of the Retina , 2000, The Journal of Neuroscience.

[66]  J. Belgum,et al.  Sustained and transient synaptic inputs to on‐off ganglion cells in the mudpuppy retina. , 1983, The Journal of physiology.

[67]  I. Morgan,et al.  Chapter 8 What do amacrine cells do , 1991 .

[68]  James Theiler,et al.  A model of high-frequency oscillatory potentials in retinal ganglion cells , 2003, Visual Neuroscience.

[69]  D. R. Dvorak,et al.  Selective abolition of OFF responses in kainic acid-lesioned chicken retina , 1990, Brain Research.

[70]  Paul Witkovsky,et al.  Neurotransmitter actions on transient amacrine and ganglion cells of the turtle retina , 2004, Visual Neuroscience.

[71]  W. Eldred,et al.  Immunocytochemical localization of glycine in the retina of the turtle (Pseudemys scripta) , 1989, Visual Neuroscience.