The Use, Design, Synthesis, and Properties of High Performance/High Temperature Polymers: An Overview

An overview of the definition and development of, factors that contribute to, applications and markets for and the design of high performance/high temperature polymers is presented. Of the many families of high performance/high temperature polymers known, the most popular families consisting of polyimides, polyarylene ethers and phenylethynyl-terninated oligomers are used to demonstrate the basic principles in polymer development. Chemical structure/property relationships are used to show how polymers can be designed with a unique combination of properties. The estimated worldwide market for high temperature polymers in 2000 was 206,700,000 kgs constituting $4.36B with polyimides comprising 3,982,000 kgs or $1 .07B (24% of the dollar value). With an improvement in the world economy, this market is predicted to grow substantially

[1]  H. Inoue,et al.  Preparation of Polyimide Films from A-BPDA/ODA by One-Pot and Two-Step Imidization Methods , 1998 .

[2]  Zemin Shi,et al.  Thermo-Processable Polyimides with HighTg and High Thermo-Oxidative Stability as Derived from 2,3,3′,4′-biphenyltetracarboxylic dianhydride , 2001 .

[3]  Tsutomu Takeichi,et al.  Studies on thermal and mechanical properties of polyimide-clay nanocomposites , 2001 .

[4]  G. Kwiatkowski,et al.  High molecular weight aromatic polymers by nickel coupling of aryl polychlorides , 1990 .

[5]  M. I. Bessonov,et al.  Polyimides : thermally stable polymers , 1987 .

[6]  B. Jensen,et al.  Poly(arylene ethers) , 1988 .

[7]  J. Mcgrath,et al.  Synthesis, kinetic observations and characteristics of polyarylene ether sulphones prepared via a potassium carbonate DMAC process , 1984 .

[8]  J. Connell,et al.  Oligomers and Polymers Containing Phenylethynyl Groups , 2000 .

[9]  D. Picq,et al.  Polyimides and Other High‐Temperature Polymers , 2003 .

[10]  H. M. V. Dort,et al.  Poly-p-phenylene oxide , 1968 .

[11]  M. Ueda,et al.  Synthesis of aromatic poly(ether ketones) , 1987 .

[12]  Stephen Z. D. Cheng,et al.  A high-performance aromatic polyimide fibre: 1. Structure, properties and mechanical-history dependence , 1991 .

[13]  H. Kricheldorf,et al.  New polymer synthesis. IX. Synthesis of poly(ether sulfone)s from silylated diphenols or hydroxybenzoic acids , 1983 .

[14]  F. Harris,et al.  Soluble aromatic polyimides from phenylated dianhydrides , 1975 .

[15]  R. Yokota,et al.  Structure and Properties of Novel Asymmetric Biphenyl Type Polyimides. Homo- and Copolymers and Blends , 1999 .

[16]  P. Cotts,et al.  The Synthesis of Polyamic-Acids with Controlled Molecular Weights , 1984 .

[17]  A. H. Frazer High temperature resistant polymers , 1968 .

[18]  R. Yokota,et al.  Improvement of thermoplasticity for s‐BPDA/PDA by copolymerization and blend with novel asymmetric BPDA‐based polyimides , 1999 .

[19]  J. Mcgrath,et al.  Endgroup substituent effects on the rate/extent of network formation and adhesion for phenylethynyl-terminated poly(arylene ether sulfone) oligomers , 2000 .

[20]  David J. Williams,et al.  Synthesis, structure, and ring-opening polymerisation of strained macrocyclic biaryls: a new route to high-performance materials , 1990 .

[21]  J. Mcgrath,et al.  Unique Characteristics Derived From Poly(Arylene Ether Phosphine Oxide)s , 1991 .

[22]  P. Hergenrother,et al.  Effect of Molecular Weight on Poly(arylene ether ketone) Properties , 1989 .

[23]  D. V. Krevelen Properties of Polymers , 1990 .

[24]  M. A. White,et al.  Perfluoroalkylene‐linked aromatic polyimides. I. Synthesis, structure, and some general physical characteristics , 1972 .

[25]  F. Harris,et al.  Synthesis and Properties of Phenylethynyl-Terminated, Star-Branched, Phenylquinoxaline Oligomers , 2000 .

[26]  Y. Krasnov,et al.  Aromatic polyimides produced from esterified poly(acid)amides , 1971 .

[27]  Stephen Z. D. Cheng,et al.  Thermal degradation mechanism and thermal mechanical properties of two high-performance aromatic polyimide fibers , 1999 .

[28]  K. L. Mittal,et al.  Polyimides: Fundamentals and Applications , 1996 .

[29]  C. Marvel Thermally stable polymers , 1968 .

[30]  V. Percec,et al.  Synthesis of aromatic polyethers by Scholl reaction. I. Poly(1,1′‐dinaphthyl ether phenyl sulfone)s and poly(1,1′‐dinaphthyl ether phenyl ketone)s , 1988 .

[31]  M. Kakimoto,et al.  Preparation of a New Class of Polyimide-Silica Hybrid Films by Sol-Gel Process , 1992 .

[32]  T. Kurauchi,et al.  Synthesis and properties of polyimide–clay hybrid , 1993 .

[33]  H. Gager,et al.  Polyimide structure-property relationships. II - Polymers from isomeric diamines , 1976 .

[34]  M. Ueda,et al.  Synthesis of Wholly Alicyclic Polyimides from N-Silylated Alicyclic Diamines and Alicyclic Dianhydrides , 2002 .

[35]  M. Kakimoto,et al.  Synthesis and Properties of AB-Type Semicrystalline Polyimides Prepared from Polyamic Acid Ethyl Ester Precursors , 2001 .

[36]  H. Vogel Polyarylsulfones, synthesis and properties, , 1970 .

[37]  M. Webber,et al.  Polymer syntheses via aromatic nitro displacement reaction , 1980 .

[38]  Stephen Z. D. Cheng,et al.  High-performance aromatic polyimide fibres: 2. Thermal mechanical and dynamic properties , 1993 .

[39]  C. N. Merriam,et al.  Poly(aryl ethers) by nucleophilic aromatic substitution. I. Synthesis and properties , 1967 .

[40]  J. G. Smith,et al.  Resin Transfer Moldable Phenylethynyl Containing Imide Oligomers , 2002 .

[41]  G. Endres,et al.  POLYMERIZATION BY OXIDATIVE COUPLING , 1959 .

[42]  K. Wei,et al.  Mechanical properties of clay-polyimide (BTDA-ODA) nanocomposites via ODA-modified organoclay , 2000 .

[43]  R. Seymour,et al.  Structure-solubility relationships in polymers , 1977 .

[44]  K. Watson,et al.  Space Environmentally Stable Polyimides and Copolyimides Derived from [2,4-Bis(3-aminophenoxy)phenyl]diphenylphosphine Oxide , 2002 .

[45]  J. A. Kreuz,et al.  Studies of thermal cyclizations of polyamic acids and tertiary amine salts , 1966 .