Classification of hyperspectral images by tensor modeling and additive morphological decomposition

Pixel-wise classification in high-dimensional multivariate images is investigated. The proposed method deals with the joint use of spectral and spatial information provided in hyperspectral images. Additive morphological decomposition (AMD) based on morphological operators is proposed. AMD defines a scale-space decomposition for multivariate images without any loss of information. AMD is modeled as a tensor structure and tensor principal components analysis is compared as dimensional reduction algorithm versus classic approach. Experimental comparison shows that the proposed algorithm can provide better performance for the pixel classification of hyperspectral image than many other well-known techniques. Highlights? Additive morphological decomposition without any loss of information is proposed. ? Decomposition is modeled as a tensor structure. ? Tensor PCA is compared versus PCA. ? Proposed workflow performs better than other techniques in HSI classification.

[1]  Lorenzo Bruzzone,et al.  A Multilevel Context-Based System for Classification of Very High Spatial Resolution Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Jon Atli Benediktsson,et al.  Segmentation and classification of hyperspectral images using watershed transformation , 2010, Pattern Recognit..

[3]  Sébastien Lefèvre,et al.  A comparative study on multivariate mathematical morphology , 2007, Pattern Recognit..

[4]  Chris H. Q. Ding,et al.  Are Tensor Decomposition Solutions Unique? On the Global Convergence HOSVD and ParaFac Algorithms , 2009, PAKDD.

[5]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[6]  H. Andrews,et al.  Singular value decompositions and digital image processing , 1976 .

[7]  David A. Landgrebe,et al.  Hyperspectral image data analysis , 2002, IEEE Signal Process. Mag..

[8]  Jean-Michel Morel,et al.  Fast Cartoon + Texture Image Filters , 2010, IEEE Transactions on Image Processing.

[9]  Fernand Meyer,et al.  The levelings , 1998 .

[10]  Pierre Soille,et al.  Differential Area Profiles: Decomposition Properties and Efficient Computation , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Pierre Soille,et al.  Differential Area Profiles , 2010, 2010 20th International Conference on Pattern Recognition.

[12]  Stanley Osher,et al.  Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing , 2003, J. Sci. Comput..

[13]  Jon Atli Benediktsson,et al.  Self-dual Attribute Profiles for the Analysis of Remote Sensing Images , 2011, ISMM.

[14]  Antonio J. Plaza,et al.  Hyperspectral Image Segmentation Using a New Bayesian Approach With Active Learning , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[15]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[16]  Jon Atli Benediktsson,et al.  Morphological Attribute Profiles for the Analysis of Very High Resolution Images , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Chris H. Q. Ding,et al.  Simultaneous tensor subspace selection and clustering: the equivalence of high order svd and k-means clustering , 2008, KDD.

[20]  Jon Atli Benediktsson,et al.  A new approach for the morphological segmentation of high-resolution satellite imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  Thomas D. Nielsen,et al.  Hyperspectral imaging: a novel approach for microscopic analysis. , 2001, Cytometry.

[22]  Jon Atli Benediktsson,et al.  SVM- and MRF-Based Method for Accurate Classification of Hyperspectral Images , 2010, IEEE Geoscience and Remote Sensing Letters.

[23]  Paul D. Gader,et al.  Random Set Framework for Context-Based Classification With Hyperspectral Imagery , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Guillermo Sapiro,et al.  Multiscale Representation and Segmentation of Hyperspectral Imagery Using Geometric Partial Differential Equations and Algebraic Multigrid Methods , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Gustavo Camps-Valls,et al.  Semi-Supervised Graph-Based Hyperspectral Image Classification , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Jon Atli Benediktsson,et al.  Classification and feature extraction for remote sensing images from urban areas based on morphological transformations , 2003, IEEE Trans. Geosci. Remote. Sens..

[27]  Julien Marot,et al.  Lower-Rank Tensor Approximation and Multiway Filtering , 2008, SIAM J. Matrix Anal. Appl..

[28]  Jesús Angulo,et al.  Parameters selection of morphological scale-space decomposition for hyperspectral images using tensor modeling , 2010, Defense + Commercial Sensing.

[29]  H. Heijmans Morphological image operators , 1994 .

[30]  Antonio J. Plaza,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Spectral–Spatial Hyperspectral Image Segmentation Using S , 2022 .

[31]  Jon Atli Benediktsson,et al.  Multiple Spectral–Spatial Classification Approach for Hyperspectral Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Antonio J. Plaza,et al.  Semi-supervised hyperspectral image classification based on a Markov random field and sparse multinomial logistic regression , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[33]  Pierre Soille,et al.  Advances in mathematical morphology applied to geoscience and remote sensing , 2002, IEEE Trans. Geosci. Remote. Sens..

[34]  Xin Yu,et al.  Anisotropic Diffusion for Hyperspectral Imagery Enhancement , 2010, IEEE Sensors Journal.

[35]  Caroline Fossati,et al.  Improvement of Classification for Hyperspectral Images Based on Tensor Modeling , 2010, IEEE Geoscience and Remote Sensing Letters.

[36]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[37]  Kristel Michielsen,et al.  Morphological image analysis , 2000 .

[38]  Jon Atli Benediktsson,et al.  A spatial-spectral kernel-based approach for the classification of remote-sensing images , 2012, Pattern Recognit..

[39]  Fernand Meyer Levelings and Flat Zone Morphology , 2010, 2010 20th International Conference on Pattern Recognition.

[40]  David A. Landgrebe,et al.  Hyperspectral Image Data Analysis as a High Dimensional Signal Processing Problem , 2002 .

[41]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[42]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Berkant Savas,et al.  A Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor , 2009, SIAM J. Matrix Anal. Appl..

[44]  Bruce J. Tromberg,et al.  Face Recognition in Hyperspectral Images , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[46]  Qian Du,et al.  A linear constrained distance-based discriminant analysis for hyperspectral image classification , 2001, Pattern Recognit..

[47]  Jesús Angulo,et al.  Morphological scale-space for hyperspectral images and dimensionality exploration using tensor modeling , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[48]  Jesús Angulo,et al.  Supervised Ordering in ${\rm I}\!{\rm R}^p$: Application to Morphological Processing of Hyperspectral Images , 2011, IEEE Transactions on Image Processing.

[49]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[50]  Salah Bourennane,et al.  Improvement of Target Detection Methods by Multiway Filtering , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Johannes R. Sveinsson,et al.  Classification of hyperspectral data from urban areas based on extended morphological profiles , 2005, IEEE Transactions on Geoscience and Remote Sensing.