Aggregated TiO2 nanotubes with high field emission properties

Abstract A facile approach is developed to easily fabricate field emission (FE) cathodes based on TiO 2 nanotubes with different geometrical structures at low temperature. Planar TiO 2 nanotubes (P-TNTs) are first synthesized using the electrochemical anodization process with applied voltages of 20–50 V for 1 h at room temperature followed by thermal oxidation at 280 °C for 2 h under atmosphere ambient. P-TNTs can be transformed into aggregated TiO 2 nanotubes (A-TNTs) after H 2 O 2 post-treatment for 1 h at room temperature. FESEM, XRD, and Raman spectroscopy were used to analyze the surface morphology, crystallinity, and chemical binding, respectively. The A-TNTs fabricated with the applied voltages of 30–50 V cathodes possess higher levels of FE properties (lower turn-on electric field and higher current density) than the other cathodes due to their greater number of emission sites and decrement of the screening effect. The A-TNT with an applied voltage of 40 V cathode exhibits the lowest turn-on electric field (4.87 V/μm, 1 μA/cm 2 ) and the highest enhancement factor β (1486). These superior properties indicate that the A-TNTs are promising field cathodes for future FE applications.

[1]  Kai Wu,et al.  A cylindrical core-shell-like TiO2 nanotube array anode for flexible fiber-type dye-sensitized solar cells , 2011, Nanoscale research letters.

[2]  Gengmin Zhang,et al.  TiO₂ nanotip arrays: anodic fabrication and field-emission properties. , 2012, ACS applied materials & interfaces.

[3]  A. K. Tyagi,et al.  Enhanced Field Emission Properties of Electrochemically Synthesized Self-Aligned Nitrogen-Doped TiO2 Nanotube Array Thin Films , 2012 .

[4]  Muhammad Riaz,et al.  Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods , 2009, Sensors.

[5]  Jianlong Liu,et al.  Improved field emission property of graphene paper by plasma treatment , 2010 .

[6]  Dong‐sheng Li,et al.  Electron field emission from the semimetallic TiO2 nanotube arrays , 2013 .

[7]  Wei-min Liu,et al.  Field emission from TiO2/Ti nanotube arrays with different morphologies , 2010 .

[8]  Wei-min Liu,et al.  Synthesis and field emission of diamond-like carbon nanorods on TiO2/Ti nanotube arrays , 2009 .

[9]  Z. Yin,et al.  Enhancement of field emission of the ZnO film by the reduced work function and the increased conductivity via hydrogen plasma treatment , 2009 .

[10]  Dong‐sheng Li,et al.  Enhanced field emission from hydrogenated TiO2 nanotube arrays , 2012, Nanotechnology.

[11]  Song Han,et al.  F–B-codoping of anodized TiO2 nanotubes using chemical vapor deposition , 2007 .

[12]  Jin-Ming Wu,et al.  Distinct visible-light response of composite films with CdS electrodeposited on TiO2 nanorod and nanotube arrays , 2009 .

[13]  H. Zeng,et al.  Structural transformation, photocatalytic, and field-emission properties of ridged TiO2 nanotubes. , 2011, ACS applied materials & interfaces.

[14]  Bohr‐Ran Huang,et al.  A facile synthesis of ZnO nanotubes and their hydrogen sensing properties , 2013 .

[15]  K. Chattopadhyay,et al.  Morphology control of rutile TiO2 hierarchical architectures and their excellent field emission properties , 2012 .

[16]  S. K. Lee,et al.  Facile microwave-assisted hydrothermal synthesis of TiO2 nanotubes , 2012 .

[17]  S. Molloi,et al.  Effect of TiO2 nanotube parameters on field emission properties , 2010, Nanotechnology.

[18]  Dong‐sheng Li,et al.  Aligned rutile TiO2 nanorods: Facile synthesis and field emission , 2013 .

[19]  A. Fujishima,et al.  Photoenergy conversion with TiO2 photocatalysis: New materials and recent applications , 2012 .

[20]  Wei Yan,et al.  Application of ultrasonic wave to clean the surface of the TiO2 nanotubes prepared by the electrochemical anodization , 2011 .

[21]  Wei-min Liu,et al.  Field emission from the structure of well-aligned TiO2/Ti nanotube arrays , 2009 .

[22]  Z. Lockman,et al.  Extremely Fast Growth Rate of TiO2 Nanotube Arrays in Electrochemical Bath Containing H2O2 , 2011 .

[23]  Kiran Jain,et al.  Highly sensitive and pulse-like response toward ethanol of Nb doped TiO2 nanorods based gas sensors , 2012 .

[24]  D. Manfredi,et al.  An easy approach for the fabrication of TiO2 nanotube-based transparent photoanodes for Dye-sensitized Solar Cells , 2013 .

[25]  Wei-min Liu,et al.  Electron field emission from the carbon-doped TiO2 nanotube arrays , 2011 .