Studying crime trends in the USA over the years 2000–2012
暂无分享,去创建一个
[1] Raphael Gottardo,et al. Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: an alternative to the skew-t distribution , 2010, Statistics and Computing.
[2] Tsung I. Lin,et al. Maximum likelihood estimation for multivariate skew normal mixture models , 2009, J. Multivar. Anal..
[3] Norman R. Draper,et al. On Distributions and Their Transformation to Normality , 1969 .
[4] Volodymyr Melnykov,et al. Efficient estimation in model‐based clustering of Gaussian regression time series , 2012, Stat. Anal. Data Min..
[5] Geoffrey J. McLachlan,et al. Finite mixtures of multivariate skew t-distributions: some recent and new results , 2014, Stat. Comput..
[6] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[7] Deniz Akdemir,et al. A Matrix Variate Skew Distribution , 2010 .
[8] P. McNicholas,et al. Model‐based clustering of longitudinal data , 2010 .
[9] Victor H. Lachos,et al. Multivariate mixture modeling using skew-normal independent distributions , 2012, Comput. Stat. Data Anal..
[10] Tony H. Grubesic,et al. On The Application of Fuzzy Clustering for Crime Hot Spot Detection , 2006 .
[11] Adrian E. Raftery,et al. Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .
[12] Volodymyr Melnykov,et al. Model-based biclustering of clickstream data , 2016, Comput. Stat. Data Anal..
[13] Volodymyr Melnykov,et al. Manly transformation in finite mixture modeling , 2016, Comput. Stat. Data Anal..
[14] A. Raftery,et al. Model-based Gaussian and non-Gaussian clustering , 1993 .
[15] Solomon W. Harrar,et al. On matrix variate skew-normal distributions , 2005 .
[16] Cinzia Viroli,et al. Model based clustering for three-way data structures , 2011 .
[17] P. McNicholas,et al. A matrix variate skew‐t distribution , 2017, Pattern Recognit..
[18] Anthony C. Atkinson,et al. Exploring Multivariate Data with the Forward Search , 2004 .
[19] Volodymyr Melnykov,et al. Finite Mixture Modeling of Gaussian Regression Time Series with Application to Dendrochronology , 2016, Journal of Classification.
[20] Ryan P. Browne,et al. A mixture of generalized hyperbolic distributions , 2013, 1305.1036.
[21] Cinzia Viroli,et al. Finite mixtures of matrix normal distributions for classifying three-way data , 2011, Stat. Comput..
[22] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.
[23] Richard A. Johnson,et al. A new family of power transformations to improve normality or symmetry , 2000 .
[24] D. Cox,et al. An Analysis of Transformations , 1964 .
[25] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[26] Bryan F. J. Manly,et al. Exponential Data Transformations , 1976 .
[27] Brian J. Reich,et al. Partially supervised spatiotemporal clustering for burglary crime series identification , 2015 .
[28] C. Viroli,et al. Covariance pattern mixture models for the analysis of multivariate heterogeneous longitudinal data , 2014, 1401.1301.
[29] Cinzia Viroli,et al. On matrix-variate regression analysis , 2012, J. Multivar. Anal..
[30] K. Harries,et al. A crime based analysis and classification of 729 American cities , 1976 .
[31] Ryan P. Browne,et al. Mixtures of Shifted AsymmetricLaplace Distributions , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[32] Geoffrey J. McLachlan,et al. On mixtures of skew normal and skew $$t$$-distributions , 2012, Adv. Data Anal. Classif..