Studying crime trends in the USA over the years 2000–2012

Studying crime trends and tendencies is an important problem that helps to identify socioeconomic patterns and relationships of crucial significance. Finite mixture models are famous for their flexibility in modeling heterogeneity in data. A novel approach designed for accounting for skewness in the distributions of matrix observations is proposed and applied to the United States crime data collected between 2000 and 2012 years. Then, the model is further extended by incorporating explanatory variables. A step-by-step model development demonstrates differences and improvements associated with every stage of the process. Results obtained by the final model are illustrated and thoroughly discussed. Multiple interesting conclusions have been drawn based on the developed model and obtained model-based clustering partition.

[1]  Raphael Gottardo,et al.  Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: an alternative to the skew-t distribution , 2010, Statistics and Computing.

[2]  Tsung I. Lin,et al.  Maximum likelihood estimation for multivariate skew normal mixture models , 2009, J. Multivar. Anal..

[3]  Norman R. Draper,et al.  On Distributions and Their Transformation to Normality , 1969 .

[4]  Volodymyr Melnykov,et al.  Efficient estimation in model‐based clustering of Gaussian regression time series , 2012, Stat. Anal. Data Min..

[5]  Geoffrey J. McLachlan,et al.  Finite mixtures of multivariate skew t-distributions: some recent and new results , 2014, Stat. Comput..

[6]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[7]  Deniz Akdemir,et al.  A Matrix Variate Skew Distribution , 2010 .

[8]  P. McNicholas,et al.  Model‐based clustering of longitudinal data , 2010 .

[9]  Victor H. Lachos,et al.  Multivariate mixture modeling using skew-normal independent distributions , 2012, Comput. Stat. Data Anal..

[10]  Tony H. Grubesic,et al.  On The Application of Fuzzy Clustering for Crime Hot Spot Detection , 2006 .

[11]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[12]  Volodymyr Melnykov,et al.  Model-based biclustering of clickstream data , 2016, Comput. Stat. Data Anal..

[13]  Volodymyr Melnykov,et al.  Manly transformation in finite mixture modeling , 2016, Comput. Stat. Data Anal..

[14]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[15]  Solomon W. Harrar,et al.  On matrix variate skew-normal distributions , 2005 .

[16]  Cinzia Viroli,et al.  Model based clustering for three-way data structures , 2011 .

[17]  P. McNicholas,et al.  A matrix variate skew‐t distribution , 2017, Pattern Recognit..

[18]  Anthony C. Atkinson,et al.  Exploring Multivariate Data with the Forward Search , 2004 .

[19]  Volodymyr Melnykov,et al.  Finite Mixture Modeling of Gaussian Regression Time Series with Application to Dendrochronology , 2016, Journal of Classification.

[20]  Ryan P. Browne,et al.  A mixture of generalized hyperbolic distributions , 2013, 1305.1036.

[21]  Cinzia Viroli,et al.  Finite mixtures of matrix normal distributions for classifying three-way data , 2011, Stat. Comput..

[22]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[23]  Richard A. Johnson,et al.  A new family of power transformations to improve normality or symmetry , 2000 .

[24]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[25]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[26]  Bryan F. J. Manly,et al.  Exponential Data Transformations , 1976 .

[27]  Brian J. Reich,et al.  Partially supervised spatiotemporal clustering for burglary crime series identification , 2015 .

[28]  C. Viroli,et al.  Covariance pattern mixture models for the analysis of multivariate heterogeneous longitudinal data , 2014, 1401.1301.

[29]  Cinzia Viroli,et al.  On matrix-variate regression analysis , 2012, J. Multivar. Anal..

[30]  K. Harries,et al.  A crime based analysis and classification of 729 American cities , 1976 .

[31]  Ryan P. Browne,et al.  Mixtures of Shifted AsymmetricLaplace Distributions , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Geoffrey J. McLachlan,et al.  On mixtures of skew normal and skew $$t$$-distributions , 2012, Adv. Data Anal. Classif..