Non-smooth Newton Methods for Deformable Multi-body Dynamics

We present a framework for the simulation of rigid and deformable bodies in the presence of contact and friction. Our method is based on a non-smooth Newton iteration that solves the underlying nonlinear complementarity problems (NCPs) directly. This approach allows us to support nonlinear dynamics models, including hyperelastic deformable bodies and articulated rigid mechanisms, coupled through a smooth isotropic friction model. The fixed-point nature of our method means it requires only the solution of a symmetric linear system as a building block. We propose a new complementarity preconditioner for NCP functions that improves convergence, and we develop an efficient GPU-based solver based on the conjugate residual (CR) method that is suitable for interactive simulations. We show how to improve robustness using a new geometric stiffness approximation and evaluate our method’s performance on a number of robotics simulation scenarios, including dexterous manipulation and training using reinforcement learning.

[1]  Dinesh K. Pai,et al.  Post-stabilization for rigid body simulation with contact and constraints , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[2]  S. Dirkse,et al.  The path solver: a nommonotone stabilization scheme for mixed complementarity problems , 1995 .

[3]  N. Maratos,et al.  Exact penalty function algorithms for finite dimensional and control optimization problems , 1978 .

[4]  M. Ferris,et al.  Complementarity problems in GAMS and the PATH solver 1 This material is based on research supported , 2000 .

[5]  Mihai Anitescu,et al.  A constraint‐stabilized time‐stepping approach for rigid multibody dynamics with joints, contact and friction , 2004 .

[6]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[7]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[8]  Xinyu Liu,et al.  Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics , 2017, Robotics: Science and Systems.

[9]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[10]  Kenny Erleben Numerical methods for linear complementarity problems in physics-based animation , 2013, SIGGRAPH '13.

[11]  Sergey Levine,et al.  Sim2Real View Invariant Visual Servoing by Recurrent Control , 2017 .

[12]  P. Alart,et al.  A generalized Newton method for contact problems with friction , 1988 .

[13]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[14]  Michael A. Saunders,et al.  CG Versus MINRES: An Empirical Comparison , 2012 .

[15]  Richard Tonge,et al.  Mass splitting for jitter-free parallel rigid body simulation , 2012, ACM Trans. Graph..

[16]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[17]  Michel Jean,et al.  Unilaterality and dry friction in the dynamics of rigid body collections , 2020 .

[18]  Jeffrey C. Trinkle,et al.  A Geometrically Exact Contact Model for Polytopes in Multirigid-Body Simulation , 2017 .

[19]  Yuval Tassa,et al.  Emergence of Locomotion Behaviours in Rich Environments , 2017, ArXiv.

[20]  D. Stewart,et al.  AN IMPLICIT TIME-STEPPING SCHEME FOR RIGID BODY DYNAMICS WITH INELASTIC COLLISIONS AND COULOMB FRICTION , 1996 .

[21]  Erwin Coumans,et al.  Bullet physics simulation , 2015, SIGGRAPH Courses.

[22]  Sergey Levine,et al.  Sim2Real View Invariant Visual Servoing by Recurrent Control , 2017, ArXiv.

[23]  Sergey Levine,et al.  Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection , 2016, Int. J. Robotics Res..

[24]  Dinesh K. Pai,et al.  Staggered projections for frictional contact in multibody systems , 2008, SIGGRAPH Asia '08.

[25]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[26]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[27]  Doug L. James,et al.  Toward high-quality modal contact sound , 2011, ACM Trans. Graph..

[28]  Pierre Alart,et al.  Méthode de Newton généralisée en mécanique du contact , 1997 .

[29]  Matthias Müller,et al.  XPBD: position-based simulation of compliant constrained dynamics , 2016, MIG.

[30]  A. Fischer A special newton-type optimization method , 1992 .

[31]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[32]  Masao Fukushima,et al.  Smoothing Functions for Second-Order-Cone Complementarity Problems , 2002, SIAM J. Optim..

[33]  Florence Bertails-Descoubes,et al.  A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics , 2011, ACM Trans. Graph..

[34]  Markus H. Gross,et al.  Implicit Contact Handling for Deformable Objects , 2009, Comput. Graph. Forum.

[35]  Christian Duriez,et al.  Control of elastic soft robots based on real-time finite element method , 2013, 2013 IEEE International Conference on Robotics and Automation.

[36]  Yanmei Li,et al.  A review of modeling of soft-contact fingers and stiffness control for dextrous manipulation in robotics , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[37]  Hammad Mazhar,et al.  Using Nesterov's Method to Accelerate Multibody Dynamics with Friction and Contact , 2015, ACM Trans. Graph..

[38]  Francisco Facchinei,et al.  The Semismooth Algorithm for Large Scale Complementarity Problems , 2001, INFORMS J. Comput..

[39]  Sarah Niebe,et al.  A nonsmooth nonlinear conjugate gradient method for interactive contact force problems , 2010, The Visual Computer.

[40]  Martin Servin,et al.  Interactive simulation of elastic deformable materials. , 2006 .

[41]  Vincent Acary,et al.  A nonsmooth Newton solver for capturing exact Coulomb friction in fiber assemblies , 2011, TOGS.

[42]  Jong-Shi Pang,et al.  Newton's Method for B-Differentiable Equations , 1990, Math. Oper. Res..

[43]  U. Ascher,et al.  Stabilization of Constrained Mechanical Systems with DAEs and Invariant Manifolds , 1995 .

[44]  Ronald Fedkiw,et al.  Two-way coupling of rigid and deformable bodies , 2008, SCA '08.

[45]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[46]  C. Lanczos The variational principles of mechanics , 1949 .

[47]  Michel Saint Jean,et al.  The non-smooth contact dynamics method , 1999 .

[48]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[49]  Miguel A. Otaduy,et al.  A Survey on Position‐Based Simulation Methods in Computer Graphics , 2014, Comput. Graph. Forum.

[50]  Jeffrey C. Trinkle,et al.  An implicit time-stepping scheme for rigid body dynamics with Coulomb friction , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[51]  Marek Teichmann,et al.  Geometric Stiffness for Real‐time Constrained Multibody Dynamics , 2017, Comput. Graph. Forum.

[52]  Atil Iscen,et al.  Sim-to-Real: Learning Agile Locomotion For Quadruped Robots , 2018, Robotics: Science and Systems.

[53]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[54]  B. Brogliato,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[55]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[56]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[57]  Kenny Erleben,et al.  Rigid body contact problems using proximal operators , 2017, Symposium on Computer Animation.

[58]  Tiantian Liu,et al.  Towards Real-time Simulation of Hyperelastic Materials , 2016, ArXiv.

[59]  Eitan Grinspun,et al.  Reflections on simultaneous impact , 2012, ACM Trans. Graph..

[60]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[61]  Eitan Grinspun,et al.  Adaptive nonlinearity for collisions in complex rod assemblies , 2014, ACM Trans. Graph..

[62]  François Faure,et al.  Stable constrained dynamics , 2015, ACM Trans. Graph..

[63]  Alec Radford,et al.  Proximal Policy Optimization Algorithms , 2017, ArXiv.

[64]  Sarah Niebe,et al.  Nonsmooth Newton Method for Fischer Function Reformulation of Contact Force Problems for Interactive Rigid Body Simulation , 2009, VRIPHYS.

[65]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[66]  M. SIAMJ.,et al.  NEWTON’S METHOD IN FLOATING POINT ARITHMETIC AND ITERATIVE REFINEMENT OF GENERALIZED EIGENVALUE PROBLEMS∗ , 1999 .

[67]  F. Moldoveanu,et al.  VIRTUAL TRY ON SYSTEMS FOR CLOTHES : ISSUES AND SOLUTIONS , 2015 .

[68]  Miguel A. Otaduy,et al.  Strain limiting for soft finger contact simulation , 2013, 2013 World Haptics Conference (WHC).

[69]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[70]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[71]  Theodore Kim,et al.  Stable Neo-Hookean Flesh Simulation , 2018, ACM Trans. Graph..

[72]  Emanuel Todorov,et al.  Implicit nonlinear complementarity: A new approach to contact dynamics , 2010, 2010 IEEE International Conference on Robotics and Automation.

[73]  F. Jourdan,et al.  A Gauss-Seidel like algorithm to solve frictional contact problems , 1998 .

[74]  M. Ferris,et al.  Complementarity Problems in GAMS and the , 1998 .