Weak Second Order Explicit Exponential Runge-Kutta Methods for Stochastic Differential Equations

We propose new explicit exponential Runge--Kutta methods for the weak approximation of solutions of stiff Ito stochastic differential equations (SDEs). We also consider the use of exponential Runge--Kutta methods in combination with splitting methods. These methods have weak order 2 for multidimensional, noncommutative SDEs with a semilinear drift term, whereas they are of order 2 or 3 for semilinear ordinary differential equations. These methods are A-stable in the mean square sense for a scalar linear test equation whose drift and diffusion terms have complex coefficients. We carry out numerical experiments to compare the performance of these methods with an existing explicit stabilized method of weak order 2.

[1]  Iyabo Ann Adamu Numerical approximation of SDEs and stochastic Swift-Hohenberg equation , 2011 .

[2]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[3]  David Cohen,et al.  Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations , 2012, Numerische Mathematik.

[4]  J. D. Lawson,et al.  Generalized Runge-Kutta Processes for Stiff Initial-value Problems† , 1975 .

[5]  Kevin Burrage,et al.  Weak second order S-ROCK methods for Stratonovich stochastic differential equations , 2012, J. Comput. Appl. Math..

[6]  Kevin Burrage,et al.  Strong first order S-ROCK methods for stochastic differential equations , 2013, J. Comput. Appl. Math..

[7]  G. Lord,et al.  Stochastic exponential integrators for finite element discretization of SPDEs for multiplicative and additive noise , 2011, 1103.1986.

[8]  Assyr Abdulle,et al.  Mean-square A-stable diagonally drift-implicit integrators of weak second order for stiff Itô stochastic differential equations , 2013 .

[9]  J. D. Lawson Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants , 1967 .

[10]  A. Abdulle,et al.  S-ROCK methods for stiff Ito SDEs , 2008 .

[11]  G. Mil’shtein Weak Approximation of Solutions of Systems of Stochastic Differential Equations , 1986 .

[12]  Dariusz Gatarek,et al.  Stochastic burgers equation with correlated noise , 1995 .

[13]  P. Houwen,et al.  On the Internal Stability of Explicit, m‐Stage Runge‐Kutta Methods for Large m‐Values , 1979 .

[14]  Marlis Hochbruck,et al.  Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..

[15]  N. Higham,et al.  Computing A, log(A) and Related Matrix Functions by Contour Integrals , 2007 .

[16]  Nicholas J. Higham,et al.  Computing AAlpha, log(A), and Related Matrix Functions by Contour Integrals , 2008, SIAM J. Numer. Anal..

[17]  Kristian Debrabant,et al.  Families of efficient second order Runge--Kutta methods for the weak approximation of Itô stochastic differential equations , 2009, 1303.5103.

[18]  Desmond J. Higham A-STABILITY AND STOCHASTIC MEAN-SQUARE STABILITY , 2000 .

[19]  Assyr Abdulle,et al.  Second order Chebyshev methods based on orthogonal polynomials , 2001, Numerische Mathematik.

[20]  Assyr Abdulle,et al.  Weak Second Order Explicit Stabilized Methods for Stiff Stochastic Differential Equations , 2013, SIAM J. Sci. Comput..

[21]  Assyr Abdulle,et al.  S-ROCK: Chebyshev Methods for Stiff Stochastic Differential Equations , 2008, SIAM J. Sci. Comput..

[22]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[23]  Á. Tocino,et al.  On preserving long-time features of a linear stochastic oscillator , 2007 .

[24]  Andreas Rößler,et al.  Rooted Tree Analysis for Order Conditions of Stochastic Runge-Kutta Methods for the Weak Approximation of Stochastic Differential Equations , 2006 .

[25]  Marlis Hochbruck,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..

[26]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[27]  K. Burrage,et al.  A stochastic exponential Euler scheme for simulation of stiff biochemical reaction systems , 2014, BIT Numerical Mathematics.

[28]  Antoine Tambue,et al.  Exponential time integrators for stochastic partial differential equations in 3D reservoir simulation , 2012, Computational Geosciences.

[29]  David A. Pope An exponential method of numerical integration of ordinary differential equations , 1963, CACM.

[30]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[31]  Chiping Zhang,et al.  The Convergence and MS Stability of Exponential Euler Method for Semilinear Stochastic Differential Equations , 2012 .