A comparative study of MP2, B3LYP, RHF and SCC-DFTB force fields in predicting the vibrational spectra of N-acetyl-L-alanine-N'-methyl amide: VA and VCD spectra

[1]  Rebecca C. Wade,et al.  L-Alanyl-L-alanine in the zwitterionic state: structures determined in the presence of explicit water molecules and with continuum models using density functional theory , 1999 .

[2]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[3]  E. Tajkhorshid,et al.  Structure and Vibrational Spectra of the Zwitterion l-Alanine in the Presence of Explicit Water Molecules: A Density Functional Analysis , 1998 .

[4]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[5]  Sándor Suhai,et al.  Theoretical Study of Aqueous N-Acetyl-l-alanine N‘-Methylamide: Structures and Raman, VCD, and ROA Spectra , 1998 .

[6]  Ming-Jing Hwang,et al.  Derivation of class II force fields: V. Quantum force field for amides, peptides, and related compounds , 1998, J. Comput. Chem..

[7]  Peter A. Kollman,et al.  Calculation of the Φ-Ψ maps for alanyl and glycyl dipeptides with different additive and non-additive molecular mechanical models , 1997 .

[8]  H. Bohr,et al.  Density Functional and Neural Network Analysis , 1997 .

[9]  Sándor Suhai,et al.  N-Acetyl-L-alanine N'-methylamide: a density functional analysis of the vibrational absorption and vibrational circular dichroism spectra , 1996 .

[10]  M. Frisch,et al.  Ab initio calculation of atomic axial tensors and vibrational rotational strengths using density functional theory , 1996 .

[11]  K. Jalkanen,et al.  Solution-Phase Conformations of N-Acetyl-N‘-methyl-l-alaninamide from Vibrational Raman Optical Activity , 1996 .

[12]  Benny G. Johnson,et al.  The prediction of Raman spectra by density functional theory. Preliminary findings , 1995 .

[13]  Jay W. Ponder,et al.  Accurate modeling of the intramolecular electrostatic energy of proteins , 1995, J. Comput. Chem..

[14]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[15]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[16]  K. Ruud,et al.  Basis set convergence of atomic axial tensors obtained from self-consistent field calculations using London atomic orbitals , 1994 .

[17]  J. Olsen,et al.  Vibrational Raman optical activity calculations using London atomic orbitals , 1994 .

[18]  Michael J. Frisch,et al.  Analytic second derivatives of the gradient-corrected density functional energy. Effect of quadrature weight derivatives , 1993 .

[19]  H. Hofmann,et al.  Conformation dynamics in peptides: quantum chemical calculations and molecular dynamics simulations on N-acetylalanyl-N'-methylamide , 1993 .

[20]  K. Ruud,et al.  Gauge-origin independent multiconfigurational self-consistent-field theory for vibrational circular dichroism , 1993 .

[21]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[22]  Nicholas C. Handy,et al.  Analytic Second Derivatives of the Potential Energy Surface , 1993 .

[23]  Peter A. Kollman,et al.  Ab initio SCF and MP2 calculations on four low-energy conformers of N-acetyl-N'-methylalaninamide , 1992 .

[24]  Sarah L. Price,et al.  The effect of basis set and electron correlation on the predicted electrostatic interactions of peptides , 1992 .

[25]  Charles L. Brooks,et al.  Conformational equilibrium in the alanine dipeptide in the gas phase and aqueous solution : a comparison of theoretical results , 1992 .

[26]  Stefan Brode,et al.  Ab initio SCF calculations on low-energy conformers of N-acetyl-N'-methylalaninamide and N-acetyl-N'-methylglycinamide , 1991 .

[27]  P. Stephens,et al.  Ab initio Calculation of Force Fields and Vibrational Spectra: 2- Oxetanone. , 1991 .

[28]  Charles L. Brooks,et al.  Theoretical study of blocked glycine and alanine peptide analogs , 1991 .

[29]  Prasad L. Polavarapu,et al.  Ab initio vibrational Raman and Raman optical activity spectra , 1990 .

[30]  A. Balázs Ab initio study of the force field and vibrational assignment of N-acetyl-N'-methylalaninamide , 1990 .

[31]  P. Stephens,et al.  Ab initio calculations of atomic polar and axial tensors for HR, H sub 2 O, NH sub 3 , and CH sub 4 , 1990 .

[32]  Foulkes,et al.  Tight-binding models and density-functional theory. , 1989, Physical review. B, Condensed matter.

[33]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[34]  P. Stephens,et al.  Alternative formalism for the calculation of atomic polar tensors and atomic axial tensors , 1988 .

[35]  R. W. Kawiecki,et al.  Vibrational circular dichroism of propylene oxide , 1988 .

[36]  P. Stephens,et al.  Gauge dependence of vibrational rotational strengths: ammonia (NHDT) , 1988 .

[37]  P. Stephens,et al.  Theory of vibrational circular dichroism: trans-2,3-dideuteriooxirane , 1988 .

[38]  A. Becke Correlation energy of an inhomogeneous electron gas: A coordinate‐space model , 1988 .

[39]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[40]  P. Stephens,et al.  Theory of vibrational circular dichroism: trans-1(S),2(S)-dicyanocyclopropane , 1987 .

[41]  A. Voityuk,et al.  MNDO calculations of systems containing hydrogen bonds , 1987 .

[42]  P. Stephens Gauge dependence of vibrational magnetic dipole transition moments and rotational strengths , 1987 .

[43]  P. Fowler,et al.  Velocity-dependent property surfaces and the theory of vibrational circular dichroism , 1987 .

[44]  P. Stephens,et al.  Efficient calculation of vibrational magnetic dipole transition moments and rotational strengths , 1987 .

[45]  K. P. Lawley,et al.  Ab initio methods in quantum chemistry , 1987 .

[46]  R. W. Kawiecki,et al.  Scaled ab initio force fields for ethylene oxide and propylene oxide , 1986 .

[47]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[48]  H. Schaefer,et al.  Analytic Raman intensities from molecular electronic wave functions , 1986 .

[49]  R. Amos Calculation of polarizability derivatives using analytic gradient methods , 1986 .

[50]  J. Bandekar,et al.  Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. , 1986, Advances in protein chemistry.

[51]  Julia E. Rice,et al.  The elimination of singularities in derivative calculations , 1985 .

[52]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[53]  P. Stephens Theory of vibrational circular dichroism , 1985 .

[54]  F. Momany,et al.  Local geometry maps and conformational transitions between low-energy conformers of N-acetyl-N′-methyl glycine amide: An ab initio study at the 4–21g level with gradient relaxed geometries , 1985 .

[55]  R. Amos Dipole moment derivatives of H2O and H2S , 1984 .

[56]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[57]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[58]  L. Schäfer,et al.  Ab initio studies of structural features not easily amenable to experiment. 23. Molecular structures and conformational analysis of the dipeptide N‐acetyl‐N′‐methyl glycyl amide and the significance of local geometries for peptide structures , 1982 .

[59]  Peter Pulay,et al.  Systematic AB Initio Gradient Calculation of Molecular Geometries, Force Constants, and Dipole Moment Derivatives , 1979 .

[60]  T. Thirunamachandran,et al.  A theory of vibrational circular dichroism in terms of vibronic interactions , 1978 .

[61]  M. Avignon,et al.  Molecular structure study of dipeptides isolated in an argon matrix by infrared spectroscopy , 1975 .

[62]  Y. Iitaka,et al.  The crystal and molecular structures of N‐acetyl‐dl‐alanine‐N‐methylamide and N‐acetyl‐l‐alanine‐N‐methylamide , 1974 .

[63]  Laurence D. Barron,et al.  Rayleigh and Raman scattering from optically active molecules , 1971 .

[64]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[65]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[66]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[67]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[68]  G. G. Hall The molecular orbital theory of chemical valency VIII. A method of calculating ionization potentials , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[69]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[70]  H. Urey,et al.  The Vibrations of Pentatonic Tetrahedral Molecules , 1931 .

[71]  V. Fock,et al.  Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .

[72]  D. Hartree The Wave Mechanics of an Atom with a non-Coulomb Central Field. Part III. Term Values and Intensities in Series in Optical Spectra , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[73]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.