Synergistic Catalysis via Brønsted Acid Modulated Frustrated Lewis Pair-Like Reaction in Carbodicarbene

[1]  D. Stephan,et al.  An intermolecular FLP System derived from an NHC-coordinated trisilacyclopropylidene. , 2020, Dalton transactions.

[2]  T. Jurca,et al.  Directing Group-Promoted Inert C-O Bond Activation Using Versatile Boronic Acid as Coupling Agent. , 2020, Chemistry.

[3]  T. Repo,et al.  Metal‐Free C−H Borylation of N‐Heteroarenes by Boron Trifluoride , 2020, Chemistry.

[4]  Jianghua He,et al.  Highly efficient cyclotrimerization of isocyanates using N-heterocyclic olefins under bulk conditions. , 2019, Chemical communications.

[5]  T. Jurca,et al.  Nickel Carbodicarbene Catalyzes Kumada Cross-Coupling of Aryl Ethers with Grignard Reagents through C-O Bond Activation , 2019, European Journal of Inorganic Chemistry.

[6]  N. Mézailles,et al.  Geminal Dianions Stabilized by Main Group Elements. , 2019, Chemical reviews.

[7]  Renjie Liu,et al.  Catalyst-Free Click Polymerization of CO2 and Lewis Monomers for Recyclable C1 Fixation and Release. , 2019, ACS macro letters.

[8]  Lili Zhao,et al.  Nickel-Catalyzed Heteroarenes Cross Coupling via Tandem C–H/C–O Activation , 2018, ACS Catalysis.

[9]  Frédéric-Georges Fontaine,et al.  Practical and Scalable Synthesis of Borylated Heterocycles Using Bench-Stable Precursors of Metal-Free Lewis Pair Catalysts , 2018, Organic Process Research & Development.

[10]  Z. Li,et al.  Synthesis of an oxygen-linked germinal frustrated Lewis pair and its application in small molecule activation , 2018, RSC advances.

[11]  An‐Hua Liu,et al.  CO2 Adducts of Carbodicarbenes: Robust and Versatile Organocatalysts for Chemical Transformation of Carbon Dioxide into Heterocyclic Compounds , 2018 .

[12]  G. Erker,et al.  Selective formation of heterocyclic trans-cycloalkenes by alkyne addition to a biphenylene-based phosphane/borane frustrated Lewis pair. , 2018, Chemical communications.

[13]  Li Dang,et al.  Theoretical studies on bridged frustrated Lewis pair (FLP) mediated H2 activation and CO2 hydrogenation , 2018 .

[14]  Aaron K. Vannucci,et al.  Mild synthesis of silyl ethers via potassium carbonate catalyzed reactions between alcohols and hydrosilanes. , 2018, Organic & biomolecular chemistry.

[15]  Chao‐Ping Hsu,et al.  One-Pot Tandem Photoredox and Cross-Coupling Catalysis with a Single Palladium Carbodicarbene Complex. , 2018, Angewandte Chemie.

[16]  Wen‐Ching Chen,et al.  Carbodicarbenes and their Captodative Behavior in Catalysis , 2018 .

[17]  Youxiang Shao,et al.  Frustrated Lewis Pair Catalyzed C-H Activation of Heteroarenes: A Stepwise Carbene Mechanism Due to Distance Effect. , 2018, Organic letters.

[18]  M. Fuchter,et al.  Direct Reductive Amination of Carbonyl Compounds Catalyzed by a Moisture Tolerant Tin(IV) Lewis Acid , 2018, Advanced synthesis & catalysis.

[19]  G. Yap,et al.  Invisible Chelating Effect Exhibited between Carbodicarbene and Phosphine through π–π Interaction and Implication in the Cross-Coupling Reaction , 2017 .

[20]  S. Meek,et al.  Chiral Pincer Carbodicarbene Ligands for Enantioselective Rhodium-Catalyzed Hydroarylation of Terminal and Internal 1,3-Dienes with Indoles. , 2017, Journal of the American Chemical Society.

[21]  Frédéric-Georges Fontaine,et al.  Metal-Free Borylation of Heteroarenes Using Ambiphilic Aminoboranes: On the Importance of Sterics in Frustrated Lewis Pair C-H Bond Activation. , 2017, Journal of the American Chemical Society.

[22]  G. Frenking,et al.  Carbodicarbenes: Unexpected π-Accepting Ability during Reactivity with Small Molecules. , 2017, Journal of the American Chemical Society.

[23]  Lili Zhao,et al.  Dative bonding in main group compounds , 2017 .

[24]  T. Müller,et al.  Dihydrogen Splitting Using Dialkylsilylene-Based Frustrated Lewis Pairs. , 2017, Chemistry, an Asian journal.

[25]  Anna L. Dunn,et al.  Stopped-Flow NMR and Quantitative GPC Reveal Unexpected Complexities for the Mechanism of NHC-Catalyzed Lactide Polymerization , 2017 .

[26]  Wen‐Ching Chen,et al.  Carbodicarbenes or Bent Allenes , 2017 .

[27]  M. Wasa,et al.  Frustrated Lewis Acid/Brønsted Base Catalysts for Direct Enantioselective α-Amination of Carbonyl Compounds. , 2017, Journal of the American Chemical Society.

[28]  S. Grimme,et al.  Reversible formylborane/SO2 coupling at a frustrated Lewis pair framework. , 2017, Chemical communications.

[29]  R. Grubbs,et al.  Sodium Hydroxide Catalyzed Dehydrocoupling of Alcohols with Hydrosilanes. , 2016, Organic letters.

[30]  A. K. Sutar,et al.  Synthesis, characterization and catalytic activity of zinc complex for ring‐opening polymerization of lactide , 2016 .

[31]  D. Wass,et al.  Small Molecule Activation by Intermolecular Zr(IV)-Phosphine Frustrated Lewis Pairs. , 2016, Journal of the American Chemical Society.

[32]  T. Jurca,et al.  Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. , 2015, Angewandte Chemie.

[33]  S. Aldridge,et al.  Facile reversibility by design: tuning small molecule capture and activation by single component frustrated Lewis pairs. , 2015, Journal of the American Chemical Society.

[34]  I. Pápai,et al.  Moisture-Tolerant Frustrated Lewis Pair Catalyst for Hydrogenation of Aldehydes and Ketones , 2015 .

[35]  Etienne Rochette,et al.  Metal-free catalytic C-H bond activation and borylation of heteroarenes , 2015, Science.

[36]  Matthew J. Goldfogel,et al.  Lewis acid activation of carbodicarbene catalysts for Rh-catalyzed hydroarylation of dienes. , 2015, Journal of the American Chemical Society.

[37]  Chao‐Ping Hsu,et al.  Synthesis and isolation of an acyclic tridentate bis(pyridine)carbodicarbene and studies on its structural implications and reactivities. , 2015, Angewandte Chemie.

[38]  Jeffrey M. Farrell,et al.  A family of N-heterocyclic carbene-stabilized borenium ions for metal-free imine hydrogenation catalysis , 2015, Chemical science.

[39]  Xiangqing Feng,et al.  Metal-Free Asymmetric Hydrogenation and Hydrosilylation Catalyzed by Frustrated Lewis Pairs , 2014 .

[40]  L. Cavallo,et al.  Chain Propagation and Termination Mechanisms for Polymerization of Conjugated Polar Alkenes by [Al]-Based Frustrated Lewis Pairs , 2014 .

[41]  D. Stephan,et al.  Enabling catalytic ketone hydrogenation by frustrated Lewis pairs. , 2014, Journal of the American Chemical Society.

[42]  Sergej Tamke,et al.  Frustrated Lewis pair catalyzed hydrosilylation and hydrosilane mediated hydrogenation of fulvenes. , 2014, Organic & biomolecular chemistry.

[43]  T. Müller,et al.  Dihydrogen activation by a silylium silylene frustrated Lewis pair and the unexpected isomerization reaction of a protonated silylene. , 2014, Chemistry.

[44]  Marc-André Courtemanche,et al.  Reducing CO₂ to methanol using frustrated Lewis pairs: on the mechanism of phosphine-borane-mediated hydroboration of CO₂. , 2014, Journal of the American Chemical Society.

[45]  Boris Vabre,et al.  Lactide polymerization catalyzed by Mg and Zn diketiminate complexes with flexible ligand frameworks. , 2014, Dalton transactions.

[46]  P. Wright,et al.  ‘Immortal’ ring-opening polymerization of ω-pentadecalactone by Mg(BHT)2(THF)2 , 2014 .

[47]  E. Chen,et al.  Probing site cooperativity of frustrated phosphine/borane Lewis pairs by a polymerization study. , 2014, Journal of the American Chemical Society.

[48]  Chao‐Ping Hsu,et al.  The elusive three-coordinate dicationic hydrido boron complex. , 2014, Journal of the American Chemical Society.

[49]  D. Stephan,et al.  Frustrated Lewis pair catalyzed hydroamination of terminal alkynes. , 2013, Angewandte Chemie.

[50]  L. Cavallo,et al.  Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: mechanisms of chain initiation, propagation, and termination. , 2013, Journal of the American Chemical Society.

[51]  C. Ladavière,et al.  Ring-opening polymerization with Zn(C6F5)2-based Lewis pairs: original and efficient approach to cyclic polyesters. , 2013, Journal of the American Chemical Society.

[52]  C. Bannwarth,et al.  Combinations of ethers and B(C6F5)3 function as hydrogenation catalysts. , 2013, Angewandte Chemie.

[53]  Laurent Maron,et al.  A highly active phosphine-borane organocatalyst for the reduction of CO2 to methanol using hydroboranes. , 2013, Journal of the American Chemical Society.

[54]  G. Yap,et al.  Synthetic Modification of Acyclic Bent Allenes (Carbodicarbenes) and Further Studies on Their Structural Implications and Reactivities , 2013 .

[55]  G. Erker,et al.  Functional group chemistry at intramolecular frustrated Lewis pairs: substituent exchange at the Lewis acid site with 9-BBN. , 2013, Dalton transactions.

[56]  Wei Zhao,et al.  Ligand-Free Magnesium Catalyst System: Immortal Polymerization of l-Lactide with High Catalyst Efficiency and Structure of Active Intermediates , 2012 .

[57]  J. Klankermayer,et al.  Asymmetric hydrogenation of imines with a recyclable chiral frustrated Lewis pair catalyst. , 2012, Dalton transactions.

[58]  L. Cavallo,et al.  Lewis pair polymerization by classical and frustrated Lewis pairs: acid, base and monomer scope and polymerization mechanism. , 2012, Dalton transactions.

[59]  M. Alcarazo On the metallic nature of carbon in allenes and heterocumulenes. , 2011, Dalton transactions.

[60]  S. Geier,et al.  Synthesis and reactivity of the phosphinoboranes R2PB(C6F5)2. , 2011, Inorganic chemistry.

[61]  A. Trifonov,et al.  Metal-catalyzed immortal ring-opening polymerization of lactones, lactides and cyclic carbonates. , 2010, Dalton transactions.

[62]  W. Piers,et al.  Tandem frustrated Lewis pair/tris(pentafluorophenyl)borane-catalyzed deoxygenative hydrosilylation of carbon dioxide. , 2010, Journal of the American Chemical Society.

[63]  Rosendo Valero,et al.  Consistent van der Waals radii for the whole main group. , 2009, The journal of physical chemistry. A.

[64]  S. Geier,et al.  Activation of H2 by phosphinoboranes R2PB(C6F5)2. , 2008, Journal of the American Chemical Society.

[65]  G. K. Fukin,et al.  Bis(guanidinate) alkoxide complexes of lanthanides: synthesis, structures and use in immortal and stereoselective ring-opening polymerization of cyclic esters. , 2008, Chemistry.

[66]  G. Bertrand,et al.  Synthesis of an extremely bent acyclic allene (a "carbodicarbene"): a strong donor ligand. , 2008, Angewandte Chemie.

[67]  A. Fürstner,et al.  Coordination chemistry of ene-1,1-diamines and a prototype "carbodicarbene". , 2008, Angewandte Chemie.

[68]  G. Frenking,et al.  C(NHC)2: zweibindige Kohlenstoff(0)‐Verbindungen mit N‐heterocyclischen Carbenliganden – theoretische Belege für eine Molekülklasse mit vielversprechenden Eigenschaften , 2007 .

[69]  G. Frenking,et al.  C(NHC)2: divalent carbon(0) compounds with N-heterocyclic carbene ligands-theoretical evidence for a class of molecules with promising chemical properties. , 2007, Angewandte Chemie.

[70]  J. Carpentier,et al.  Yttrium Complexes as Catalysts for Living and Immortal Polymerization of Lactide to Highly Heterotactic PLA , 2007 .

[71]  Jason D. Masuda,et al.  Reversible, Metal-Free Hydrogen Activation , 2006, Science.

[72]  J. Hedrick,et al.  Alcohol adducts of N-heterocyclic carbenes : Latent catalysts for the thermally-controlled living polymerization of cyclic esters , 2006 .

[73]  J. Louie,et al.  N-heterocyclic carbenes as highly efficient catalysts for the cyclotrimerization of isocyanates. , 2004, Organic letters.

[74]  J. Hedrick,et al.  A general and versatile approach to thermally generated N-heterocyclic carbenes. , 2004, Chemistry.

[75]  J. Hedrick,et al.  First example of N-heterocyclic carbenes as catalysts for living polymerization: organocatalytic ring-opening polymerization of cyclic esters. , 2002, Journal of the American Chemical Society.

[76]  S. Batsanov,et al.  Van der Waals Radii of Elements , 2001 .

[77]  Chu-chieh Lin,et al.  A Highly Efficient Catalyst for the “Living” and “Immortal” Polymerization of ε-Caprolactone and l-Lactide , 2001 .

[78]  Keiji. Yamamoto,et al.  The utility of t-butyldimethylsilane as an effective silylation reagent for the protection of functional groups , 1989 .

[79]  I. Kogon New Reactions of Phenyl Isocyanate and Ethyl Alcohol1 , 1956 .

[80]  H. Brown,et al.  Studies in Stereochemistry. I. Steric Strains as a Factor in the Relative Stability of Some Coördination Compounds of Boron , 1942 .

[81]  R. Fröhlich,et al.  Reactions of phosphorus/boron frustrated Lewis pairs with SO2 , 2013 .