A characterization of the edge connectivity of direct products of graphs

Abstract The direct product of graphs G = ( V ( G ) , E ( G ) ) and H = ( V ( H ) , E ( H ) ) is the graph, denoted as G × H , with vertex set V ( G × H ) = V ( G ) × V ( H ) , where vertices ( x 1 , y 1 ) and ( x 2 , y 2 ) are adjacent in G × H if x 1 x 2 ∈ E ( G ) and y 1 y 2 ∈ E ( H ) . The edge connectivity of a graph G , denoted as λ ( G ) , is the size of a minimum edge-cut in G . We introduce a function ψ and prove the following formula λ ( G × H ) = min { 2 λ ( G ) | E ( H ) | , 2 λ ( H ) | E ( G ) | , δ ( G × H ) , ψ ( G , H ) , ψ ( H , G ) } . We also describe the structure of every minimum edge-cut in G × H .

[1]  Bostjan Bresar,et al.  On the connectivity of the direct product of graphs , 2008, Australas. J Comb..

[2]  Jianping Ou On optimizing edge connectivity of product graphs , 2011, Discret. Math..

[3]  P. M. Weichsel THE KRONECKER PRODUCT OF GRAPHS , 1962 .

[4]  Ali Reza Ashrafi,et al.  The bipartite edge frustration of composite graphs , 2010, Discret. Appl. Math..

[5]  Guo-Liang Chen,et al.  On super edge-connectivity of product graphs , 2009, Appl. Math. Comput..

[6]  Yun Wang,et al.  Proof of a conjecture on connectivity of Kronecker product of graphs , 2011, Discret. Math..

[7]  Sandi Klavžar,et al.  ON THE EDGE-CONNECTIVITY OF CARTESIAN PRODUCT GRAPHS , 2008 .

[8]  Tomislav Doslic,et al.  Computing the bipartite edge frustration of fullerene graphs , 2007, Discret. Appl. Math..

[9]  Simon Spacapan,et al.  Connectivity of Cartesian products of graphs , 2008, Appl. Math. Lett..

[10]  Wei Wang,et al.  Connectivity of direct products of graphs , 2011, Ars Comb..

[11]  Zhao Zhang,et al.  Cyclic arc-connectivity in a Cartesian product digraph , 2010, Appl. Math. Lett..

[12]  Simon Spacapan Connectivity of Strong Products of Graphs , 2010, Graphs Comb..

[13]  Elkin Vumar,et al.  A note on the connectivity of Kronecker products of graphs , 2009, Appl. Math. Lett..

[14]  Zahra Yarahmadi The bipartite edge frustration of extension of splice and link graphs , 2010, Appl. Math. Lett..

[15]  Wei Wang,et al.  Connectivity of Kronecker products by K2 , 2012, Appl. Math. Lett..

[16]  Elkin Vumar,et al.  On edge connectivity of direct products of graphs , 2011, Inf. Process. Lett..

[17]  Chengfu Qin,et al.  Super connectivity of Kronecker products of graphs , 2010, Inf. Process. Lett..

[18]  Petter Holme,et al.  Network bipartivity. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Bostjan Bresar,et al.  Edge-connectivity of strong products of graphs , 2007, Discuss. Math. Graph Theory.