A Local Entropy Minimum Principle for Deriving Entropy Preserving Schemes

The present work deals with the establishment of stability conditions of finite volume methods to approximate weak solutions of the general Euler equations to simulate compressible flows. In order to ensure discrete entropy inequalities, we derive a new technique based on a local minimum principle to be satisfied by the specific entropy. Sufficient conditions are exhibited to satisfy the required local minimum entropy principle. Arguing these conditions, a class of entropy preserving schemes is thus derived.

[1]  Afeintou Sangam,et al.  An HLLC scheme for Ten-Moments approximation coupled with magnetic field , 2008, Int. J. Comput. Sci. Math..

[2]  D. Serre Systems of conservation laws , 1999 .

[3]  Pierre Charrier,et al.  Un solveur de Riemann approché pour l'étude d'écoulements hypersoniques bidimensionnels , 1993 .

[4]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[5]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[6]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[7]  Jean-Marc Hérard,et al.  On the use of symmetrizing variables for vacuums , 2003 .

[8]  S. Osher,et al.  Stable and entropy satisfying approximations for transonic flow calculations , 1980 .

[9]  Jean-Marc Hérard,et al.  A sequel to a rough Godunov scheme: application to real gases , 2000 .

[10]  C. Berthon,et al.  Stability of the MUSCL Schemes for the Euler Equations , 2005 .

[11]  Fabien Marche,et al.  A Positive Preserving High Order VFRoe Scheme for Shallow Water Equations: A Class of Relaxation Schemes , 2008, SIAM J. Sci. Comput..

[12]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[13]  Christophe Berthon,et al.  Numerical approximations of the 10-moment Gaussian closure , 2006, Math. Comput..

[14]  C. Chalons,et al.  Bilans d'entropie discrets dans l'approximation numerique des chocs non classiques. Application aux equations de Navier-Stokes multi-pression 2D et a quelques systemes visco-capillaires , 2002 .

[15]  Pierre Charrier,et al.  An HLLC Scheme to Solve The M1 Model of Radiative Transfer in Two Space Dimensions , 2007, J. Sci. Comput..

[16]  G. Gallice,et al.  Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source , 2002 .

[17]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[18]  Thierry Gallouët,et al.  On an Approximate Godunov Scheme , 1999 .

[19]  Ami Harten,et al.  Convex Entropies and Hyperbolicity for General Euler Equations , 1998 .

[20]  François Bouchut,et al.  Entropy satisfying flux vector splittings and kinetic BGK models , 2003, Numerische Mathematik.

[21]  I. N. Sneddon,et al.  Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves , 1999 .

[22]  Eitan Tadmor,et al.  A minimum entropy principle in the gas dynamics equations , 1986 .

[23]  B. Perthame,et al.  Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics , 1998 .

[24]  Christophe Berthon Inégalités d'entropie pour un schéma de relaxation , 2005 .

[25]  Gérard Gallice,et al.  Positive and Entropy Stable Godunov-type Schemes for Gas Dynamics and MHD Equations in Lagrangian or Eulerian Coordinates , 2003, Numerische Mathematik.

[26]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[27]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[28]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[29]  Yulong Xing,et al.  High-Order Well-Balanced Finite Difference WENO Schemes for a Class of Hyperbolic Systems with Source Terms , 2006, J. Sci. Comput..

[30]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[31]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[32]  R. LeVeque Approximate Riemann Solvers , 1992 .

[33]  Benoît Perthame,et al.  Maximum principle on the entropy and second-order kinetic schemes , 1994 .