A Local Entropy Minimum Principle for Deriving Entropy Preserving Schemes
暂无分享,去创建一个
[1] Afeintou Sangam,et al. An HLLC scheme for Ten-Moments approximation coupled with magnetic field , 2008, Int. J. Comput. Sci. Math..
[2] D. Serre. Systems of conservation laws , 1999 .
[3] Pierre Charrier,et al. Un solveur de Riemann approché pour l'étude d'écoulements hypersoniques bidimensionnels , 1993 .
[4] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[5] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .
[6] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[7] Jean-Marc Hérard,et al. On the use of symmetrizing variables for vacuums , 2003 .
[8] S. Osher,et al. Stable and entropy satisfying approximations for transonic flow calculations , 1980 .
[9] Jean-Marc Hérard,et al. A sequel to a rough Godunov scheme: application to real gases , 2000 .
[10] C. Berthon,et al. Stability of the MUSCL Schemes for the Euler Equations , 2005 .
[11] Fabien Marche,et al. A Positive Preserving High Order VFRoe Scheme for Shallow Water Equations: A Class of Relaxation Schemes , 2008, SIAM J. Sci. Comput..
[12] F. Bouchut. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .
[13] Christophe Berthon,et al. Numerical approximations of the 10-moment Gaussian closure , 2006, Math. Comput..
[14] C. Chalons,et al. Bilans d'entropie discrets dans l'approximation numerique des chocs non classiques. Application aux equations de Navier-Stokes multi-pression 2D et a quelques systemes visco-capillaires , 2002 .
[15] Pierre Charrier,et al. An HLLC Scheme to Solve The M1 Model of Radiative Transfer in Two Space Dimensions , 2007, J. Sci. Comput..
[16] G. Gallice,et al. Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source , 2002 .
[17] E. Toro,et al. Restoration of the contact surface in the HLL-Riemann solver , 1994 .
[18] Thierry Gallouët,et al. On an Approximate Godunov Scheme , 1999 .
[19] Ami Harten,et al. Convex Entropies and Hyperbolicity for General Euler Equations , 1998 .
[20] François Bouchut,et al. Entropy satisfying flux vector splittings and kinetic BGK models , 2003, Numerische Mathematik.
[21] I. N. Sneddon,et al. Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves , 1999 .
[22] Eitan Tadmor,et al. A minimum entropy principle in the gas dynamics equations , 1986 .
[23] B. Perthame,et al. Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics , 1998 .
[24] Christophe Berthon. Inégalités d'entropie pour un schéma de relaxation , 2005 .
[25] Gérard Gallice,et al. Positive and Entropy Stable Godunov-type Schemes for Gas Dynamics and MHD Equations in Lagrangian or Eulerian Coordinates , 2003, Numerische Mathematik.
[26] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[27] Z. Xin,et al. The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .
[28] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[29] Yulong Xing,et al. High-Order Well-Balanced Finite Difference WENO Schemes for a Class of Hyperbolic Systems with Source Terms , 2006, J. Sci. Comput..
[30] B. V. Leer,et al. Towards the Ultimate Conservative Difference Scheme , 1997 .
[31] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[32] R. LeVeque. Approximate Riemann Solvers , 1992 .
[33] Benoît Perthame,et al. Maximum principle on the entropy and second-order kinetic schemes , 1994 .