A bioeconomic modeling of two-prey and one-predator fishery model with optimal harvesting policy through hybridization approach

Abstract This paper introduces an imprecise prey–predator model by using interval and fuzzy number in modeling of prey and predator interaction. In a prey–predator system, values of the biological parameter are based on the collection of data by the experts from nature; therefore we consider them as interval numbers. The proposed prey–predator model is consisting of two species which are not only affected by the harvesting of the species but also by the present of predator species. All possible existence of the biological and bionomic equilibrium points of the model are discussed under impreciseness. We derive the conditions for local and global stability. The optimal harvesting policy is studied by considering instantaneous annual rate of discount under fuzziness. By logically hybridizing the interval and fuzzy number methodologies, we find the optimal equilibrium points and harvesting efforts in the form of interval. Finally, numerical examples are illustrated to support the proposed approach.

[1]  Wan-Tong Li,et al.  Optimal birth control for predator-prey system of three species with age-structure , 2004, Appl. Math. Comput..

[2]  Zhixue Luo,et al.  Optimal control for an age-dependent competitive species model in a polluted environment , 2014, Appl. Math. Comput..

[3]  R. Bassanezi,et al.  Fuzzy modelling in population dynamics , 2000 .

[4]  Huan Su,et al.  Optimal harvesting policy for stochastic Logistic population model , 2011, Appl. Math. Comput..

[5]  Rodney Carlos Bassanezi,et al.  Predator–prey fuzzy model , 2008 .

[6]  L. Alvarez,et al.  Optimal harvesting under stochastic fluctuations and critical depensation. , 1998, Mathematical biosciences.

[7]  Ke Wang,et al.  Optimal harvesting policy for general stochastic Logistic population model , 2010 .

[8]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[9]  Meng Liu,et al.  Global asymptotic stability of a stochastic delayed predator-prey model with Beddington-DeAngelis functional response , 2014, Appl. Math. Comput..

[10]  G. S. Mahapatra,et al.  Posynomial Parametric Geometric Programming with Interval Valued Coefficient , 2012, Journal of Optimization Theory and Applications.

[11]  Eric Nævdal,et al.  Optimal management of renewable resources with Darwinian selection induced by harvesting , 2008 .

[12]  Laécio C. Barros,et al.  Stability of Fuzzy Dynamic Systems , 2009, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[13]  Lansun Chen,et al.  The stage-structured predator-prey model and optimal harvesting policy. , 2000, Mathematical biosciences.

[14]  Awad I. El-Gohary,et al.  Optimal control of stochastic prey-predator models , 2003, Appl. Math. Comput..

[15]  Daqing Jiang,et al.  Qualitative analysis of a stochastic ratio-dependent predator-prey system , 2011, J. Comput. Appl. Math..

[16]  Laécio C. Barros,et al.  Attractors and asymptotic stability for fuzzy dynamical systems , 2000, Fuzzy Sets Syst..

[17]  Colin W. Clark,et al.  Mathematical Bioeconomics: The Optimal Management of Renewable Resources. , 1993 .

[18]  Atsushi Yagi,et al.  Dynamic of a stochastic predator-prey population , 2011, Appl. Math. Comput..

[19]  A. J. Lotka,et al.  Elements of Physical Biology. , 1925, Nature.

[20]  D K Bhattacharya,et al.  Bionomic equilibrium of two-species system. I. , 1996, Mathematical biosciences.

[21]  Kunal Chakraborty,et al.  Optimal control of harvest and bifurcation of a prey-predator model with stage structure , 2011, Appl. Math. Comput..

[22]  L. F. Murphy,et al.  Optimal harvesting of an age-structured population , 1990 .

[23]  R. Hannesson Optimal harvesting of ecologically interdependent fish species , 1983 .

[24]  Mark Kot,et al.  Elements of Mathematical Ecology , 2001 .

[25]  T. K. Kar,et al.  Harvesting in a two-prey one-predator fishery: a bioeconomic model , 2004 .

[26]  G. Samanta,et al.  Optimal harvesting of prey-predator system with interval biological parameters: a bioeconomic model. , 2013, Mathematical biosciences.

[27]  Eduardo González-Olivares,et al.  Optimal harvesting in a predator–prey model with Allee effect and sigmoid functional response , 2012 .

[28]  Alakes Maiti,et al.  Bioeconomic modelling of a three-species fishery with switching effect , 2003 .

[29]  Ke Wang,et al.  Dynamics of a Leslie-Gower Holling-type II predator-prey system with Lévy jumps , 2013 .

[30]  T. K. Kar,et al.  A BIO-ECONOMIC MODEL OF TWO-PREY ONE-PREDATOR SYSTEM , 2009 .

[31]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[32]  Xiaoping Xue,et al.  Impulsive functional differential inclusions and fuzzy population models , 2003, Fuzzy Sets Syst..

[33]  Vito Volterra,et al.  Leçons sur la théorie mathématique de la lutte pour la vie , 1931 .

[34]  D. Ragozin,et al.  Harvest policies and nonmarket valuation in a predator -- prey system , 1985 .