The Path to Scalable Distributed Quantum Computing

Experimental groups are now fabricating quantum processors powerful enough to execute small instances of quantum algorithms and definitively demonstrate quantum error correction that extends the lifetime of quantum data, adding urgency to architectural investigations. Although other options continue to be explored, effort is coalescing around topological coding models as the most practical implementation option for error correction on realizable microarchitectures. Scalability concerns have also motivated architects to propose distributed memory multicomputer architectures, with experimental efforts demonstrating some of the basic building blocks to make such designs possible. We compile the latest results from a variety of different systems aiming at the construction of a scalable quantum computer. 1 ar X iv :1 60 5. 06 95 1v 1 [ qu an tph ] 2 3 M ay 2 01 6

[1]  Rodney Van Meter,et al.  A blueprint for building a quantum computer , 2013, Commun. ACM.

[2]  Michelle Y. Simmons,et al.  A surface code quantum computer in silicon , 2015, Science Advances.

[3]  R. J. Schoelkopf,et al.  Multilayer microwave integrated quantum circuits for scalable quantum computing , 2015, npj Quantum Information.

[4]  Avinatan Hassidim,et al.  Fast quantum byzantine agreement , 2005, STOC '05.

[5]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[6]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[7]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[8]  I. V. Inlek,et al.  Modular entanglement of atomic qubits using photons and phonons , 2014, Nature Physics.

[9]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[10]  R. V. Meter,et al.  A Layered Architecture for Quantum Computing Using Quantum Dots , 2010 .

[11]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[12]  Jacob M. Taylor,et al.  Distributed Quantum Computation Based-on Small Quantum Registers , 2007, 0709.4539.

[13]  A. G. Fowler,et al.  Two-dimensional architectures for donor-based quantum computing , 2006 .

[14]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[15]  Austin G. Fowler,et al.  Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1) parallel time , 2013, Quantum Inf. Comput..

[16]  Chuang Quantum algorithm for distributed clock synchronization , 2000, Physical review letters.

[17]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[19]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[20]  Y. Lim,et al.  Repeat-until-success quantum computing using stationary and flying qubits (14 pages) , 2005, quant-ph/0508218.

[21]  Simon J. Devitt,et al.  A Compiler for Fault-Tolerant High Level Quantum Circuits , 2015 .

[22]  Luming Duan,et al.  Colloquium: Quantum networks with trapped ions , 2010 .

[23]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[24]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[25]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[26]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[27]  Simon J. Devitt,et al.  Cross-Level Validation of Topological Quantum Circuits , 2014, RC.

[28]  Roberto Grossi,et al.  Mathematical Foundations Of Computer Science 2003 , 2003 .

[29]  Austin G. Fowler,et al.  Time-optimal quantum computation , 2012, 1210.4626.

[30]  Keisuke Fujii,et al.  Quantum Computation with Topological Codes , 2015 .

[31]  S. Lloyd,et al.  Quantum-enhanced positioning and clock synchronization , 2001, Nature.

[32]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[33]  M. Freedman,et al.  Majorana zero modes and topological quantum computation , 2015, npj Quantum Information.

[34]  Rodney Van Meter,et al.  Designing a Million-Qubit Quantum Computer Using a Resource Performance Simulator , 2015, ACM J. Emerg. Technol. Comput. Syst..

[35]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[36]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[37]  R. Feynman Simulating physics with computers , 1999 .

[38]  J. O'Brien,et al.  Qubit entanglement between ring-resonator photon-pair sources on a silicon chip , 2015, Nature Communications.

[39]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[40]  Simon J. Devitt,et al.  Synthesis of Arbitrary Quantum Circuits to Topological Assembly , 2016, Scientific Reports.

[41]  Michele Mosca Quantum Algorithms , 2009, Encyclopedia of Complexity and Systems Science.

[42]  Jiafu Xu,et al.  Quantum programming languages: A tentative study , 2008, Science in China Series F: Information Sciences.

[43]  L. Hollenberg,et al.  Scalable Error Correction in Distributed Ion Trap Computers , 2006, quant-ph/0606226.

[44]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[45]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[46]  Unruh Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[47]  S T Merkel,et al.  Supplemental Materials : Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation , 2016 .

[48]  Andrea Morello,et al.  Bell's inequality violation with spins in silicon. , 2015, Nature nanotechnology.

[49]  S D Bartlett,et al.  Measuring a photonic qubit without destroying it. , 2004, Physical review letters.

[50]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[51]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[52]  W. Munro,et al.  Architectural design for a topological cluster state quantum computer , 2008, 0808.1782.

[53]  Alain Tapp,et al.  Can quantum mechanics help distributed computing? , 2008, SIGA.

[54]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[55]  Quipper: a scalable quantum programming language , 2013, PLDI.

[56]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[57]  F. E. Stanley,et al.  Charge-based silicon quantum computer architectures using controlled single-ion implantation , 2003, cond-mat/0306265.

[58]  Yiwen Chu,et al.  Quantum Entanglement Between an Optical Photon and a Solid-State Spin Qubit , 2011 .

[59]  J. Rarity,et al.  Photonic quantum technologies , 2013 .

[60]  David P. DiVincenzo,et al.  Fault-tolerant architectures for superconducting qubits , 2009, 0905.4839.

[61]  Mercedes Gimeno-Segovia,et al.  From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum Computation. , 2014, Physical review letters.

[62]  Colin P. Williams,et al.  Quantum clock synchronization based on shared prior entanglement , 2000, Physical review letters.

[63]  R. Rahman,et al.  Spin readout and addressability of phosphorus-donor clusters in silicon , 2012, Nature Communications.

[64]  A. V. Gorshkov,et al.  Scalable architecture for a room temperature solid-state quantum information processor , 2010, Nature Communications.

[65]  Vlad Gheorghiu,et al.  Quantum++ - A C++11 quantum computing library , 2014 .

[66]  Kae Nemoto,et al.  Requirements for fault-tolerant factoring on an atom-optics quantum computer , 2012, Nature Communications.

[67]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[68]  David Poulin,et al.  Fault-tolerant renormalization group decoder for abelian topological codes , 2013, Quantum Inf. Comput..

[69]  Ying Li,et al.  Topological quantum computing with a very noisy network and local error rates approaching one percent , 2012, Nature Communications.

[70]  Dave Bacon,et al.  Recent progress in quantum algorithms , 2010, Commun. ACM.

[71]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[72]  Xiaobo Zhu,et al.  Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond , 2012 .

[73]  Takashi Nakajima,et al.  A fault-tolerant addressable spin qubit in a natural silicon quantum dot , 2016, Science Advances.

[74]  Lingli Wang,et al.  Programmable architecture for quantum computing , 2013 .

[75]  Terry Rudolph,et al.  Quantum communication complexity of establishing a shared reference frame. , 2003, Physical review letters.

[76]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[77]  Alfred V. Aho,et al.  A layered software architecture for quantum computing design tools , 2006, Computer.

[78]  J G Rarity,et al.  On-chip manipulation of single photons from a diamond defect. , 2013, Physical review letters.

[79]  Jungsang Kim,et al.  Integrated optical approach to trapped ion quantum computation , 2007, Quantum Inf. Comput..

[80]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[81]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[82]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[83]  W. Grice Arbitrarily complete Bell-state measurement using only linear optical elements , 2011 .

[84]  Johannes Kofler,et al.  Experimental generation of single photons via active multiplexing , 2010, 1007.4798.

[85]  Ying Li,et al.  Resource costs for fault-tolerant linear optical quantum computing , 2015, 1504.02457.

[86]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[87]  I. Sagnes,et al.  Bright solid-state sources of indistinguishable single photons , 2013, Nature Communications.

[88]  Simon J. Devitt,et al.  Blueprint for a microwave ion trap quantum computer , 2015 .

[89]  Andrew S. Dzurak,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[90]  J. O'Brien Optical Quantum Computing , 2007, Science.

[91]  C. M. Marcus,et al.  Exponential protection of zero modes in Majorana islands , 2016, Nature.

[92]  Andrew S. Dzurak,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[93]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[94]  Ashley M. Stephens,et al.  Fault-tolerant thresholds for quantum error correction with the surface code , 2013, 1311.5003.

[95]  D. Ahn,et al.  Entangled quantum clocks for measuring proper-time difference , 2000 .

[96]  C. Monroe,et al.  Co-designing a scalable quantum computer with trapped atomic ions , 2016, npj Quantum Information.

[97]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[98]  Michelle Y. Simmons,et al.  Silicon quantum electronics , 2012, 1206.5202.

[99]  Simon C Benjamin,et al.  Fault tolerant quantum computation with nondeterministic gates. , 2010, Physical review letters.

[100]  Andrew D. Greentree,et al.  Diamond for Quantum Computing , 2008, Science.

[101]  M Y Simmons,et al.  Atomically precise placement of single dopants in si. , 2003, Physical review letters.

[102]  Simon J. Devitt,et al.  Classical Control of Large-Scale Quantum Computers , 2014, RC.

[103]  Joe O'Gorman,et al.  A silicon-based surface code quantum computer , 2014, npj Quantum Information.

[104]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[105]  C. Trautmann,et al.  Room-temperature entanglement between single defect spins in diamond , 2012, 1212.2804.

[106]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[107]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[108]  A. Fowler,et al.  A bridge to lower overhead quantum computation , 2012, 1209.0510.

[109]  Gerhard W. Dueck,et al.  Quantum Circuit Simplification and Level Compaction , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[110]  R. V. Meter Architecture of a quantum multicomputer optimized for Shor's factoring algorithm , 2006, quant-ph/0607065.

[111]  Damien Bonneau,et al.  Effect of loss on multiplexed single-photon sources , 2014, 1409.5341.

[112]  Matthias Steiner,et al.  Single-Shot Readout of a Single Nuclear Spin , 2010, Science.

[113]  N. Gregersen,et al.  A highly efficient single-photon source based on a quantum dot in a photonic nanowire , 2010 .

[114]  R. V. Meter,et al.  DISTRIBUTED QUANTUM COMPUTATION ARCHITECTURE USING SEMICONDUCTOR NANOPHOTONICS , 2009, 0906.2686.

[115]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[116]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[117]  S. Wehner,et al.  Spatial reference frame agreement in quantum networks , 2013, 1306.5295.

[118]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[119]  Simon J. Devitt,et al.  Mapping of Topological Quantum Circuits to Physical Hardware , 2014, Scientific Reports.

[120]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[121]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[122]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[123]  Krysta Marie Svore,et al.  LIQUi|>: A Software Design Architecture and Domain-Specific Language for Quantum Computing , 2014, ArXiv.

[124]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[125]  Andrew D. Greentree,et al.  Nanodiamonds in Fabry-Perot cavities: a route to scalable quantum computing , 2016 .

[126]  J M Amini,et al.  High-fidelity transport of trapped-ion qubits through an X-junction trap array. , 2009, Physical review letters.