A Quaternion Framework for Color Image Smoothing and Segmentation

In this paper, we present feature/detail preserving models for color image smoothing and segmentation using the Hamiltonian quaternion framework. First, we introduce a novel quaternionic Gabor filter (QGF) which can combine the color channels and the orientations in the image plane. We show that these filters are optimally localized both in the spatial and frequency domains and provide a good approximation to quaternionic quadrature filters. Using the QGFs, we extract the local orientation information in the color images. Second, in order to model this derived orientation information, we propose continuous mixtures of appropriate exponential basis functions and derive analytic expressions for these models. These analytic expressions take the form of spatially varying kernels which, when convolved with a color image or the signed distance function of an evolving contour (placed in the color image), yield a detail preserving smoothing and segmentation, respectively. Several examples on widely used image databases are shown to depict the performance of our algorithms.

[1]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[2]  Nikos Paragios,et al.  Prior Knowledge, Level Set Representations & Visual Grouping , 2008, International Journal of Computer Vision.

[3]  Ron Kimmel,et al.  Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.

[4]  K. Martin,et al.  Vector filtering for color imaging , 2005, IEEE Signal Processing Magazine.

[5]  S. Sangwine Fourier transforms of colour images using quaternion or hypercomplex, numbers , 1996 .

[6]  C. Eddie Moxey,et al.  Hypercomplex correlation techniques for vector images , 2003, IEEE Trans. Signal Process..

[7]  Ron Kimmel,et al.  Variational Restoration and Edge Detection for Color Images , 2003, Journal of Mathematical Imaging and Vision.

[8]  Thomas Bülow,et al.  Das Konzept einer zweidimensionalen Phase unter Verwendung einer algebraisch erweiterten Signalrepräsentation , 1997, DAGM-Symposium.

[9]  Stephen J. Sangwine,et al.  Hypercomplex Fourier Transforms of Color Images , 2007, IEEE Trans. Image Process..

[10]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Baba C. Vemuri,et al.  Image segmentation via convolution of a level-set function with a Rigaut Kernel , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Lilong Shi,et al.  Quaternion color texture segmentation , 2007, Comput. Vis. Image Underst..

[13]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[14]  T. Ell,et al.  Quaternion-Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[15]  Wang Hui,et al.  Color Texture Segmentation Using Quaternion-Gabor Filters , 2006 .

[16]  C. Herz BESSEL FUNCTIONS OF MATRIX ARGUMENT , 1955 .

[17]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[18]  Joachim Weickert,et al.  Coherence-enhancing diffusion of colour images , 1999, Image Vis. Comput..

[19]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[21]  Baba C. Vemuri,et al.  Multi-fiber Reconstruction from Diffusion MRI Using Mixture of Wisharts and Sparse Deconvolution , 2007, IPMI.

[22]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[23]  Tony F. Chan,et al.  Active Contours without Edges for Vector-Valued Images , 2000, J. Vis. Commun. Image Represent..

[24]  Stephen J. Sangwine,et al.  Colour image edge detector based on quaternion convolution , 1998 .

[25]  Baba C. Vemuri,et al.  Feature Preserving Image Smoothing Using a Continuous Mixture of Tensors , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[26]  Marl A Delsuc,et al.  Spectral Representation of 2D NMR Spectra by Hypercomplex Numbers , 1988 .

[27]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[28]  David Tschumperlé,et al.  Fast Anisotropic Smoothing of Multi-Valued Images using Curvature-Preserving PDE's , 2006, International Journal of Computer Vision.

[29]  B. S. Manjunath,et al.  A Variational Framework for Multiregion Pairwise-Similarity-Based Image Segmentation , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Stephen J. Sangwine,et al.  Colour image filters based on hypercomplex convolution , 2000 .

[31]  Nahum Kiryati,et al.  Deblurring of Color Images Corrupted by Impulsive Noise , 2007, IEEE Transactions on Image Processing.

[32]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[33]  Soo-Chang Pei,et al.  A novel block truncation coding of color images by using quaternion-moment-preserving principle , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[34]  Rachid Deriche,et al.  A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape , 2007, International Journal of Computer Vision.

[35]  Heinz G. Göckler,et al.  Hypercomplex algebras in digital signal processing: Benefits and drawbacks , 2007, 2007 15th European Signal Processing Conference.

[36]  Baba C. Vemuri,et al.  A Unified Computational Framework for Deconvolution to Reconstruct Multiple Fibers From Diffusion Weighted MRI , 2007, IEEE Transactions on Medical Imaging.

[37]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[38]  Thomas Bülow,et al.  Hypercomplex spectral signal representations for the processing and analysis of images , 1999 .

[39]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[40]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[41]  Jack B. Kuipers,et al.  Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality , 2002 .

[42]  Rachid Deriche,et al.  Unsupervised Segmentation Incorporating Colour, Texture, and Motion , 2003, CAIP.

[43]  B. Sundar Rajan,et al.  Full-diversity, high-rate space-time block codes from division algebras , 2003, IEEE Trans. Inf. Theory.

[44]  M. J. Prentice Orientation Statistics Without Parametric Assumptions , 1986 .

[45]  Thomas Bülow,et al.  Multi-Dimensional Signal Processin Using an Algebraically Extended Signal Representation , 1997, AFPAC.

[46]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[48]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  R. P. van Wijk van Brievingh The Geometric Model , 1975 .

[50]  Guillermo Sapiro,et al.  Color image enhancement via chromaticity diffusion , 2001, IEEE Trans. Image Process..

[51]  Baba C. Vemuri,et al.  A novel tensor distribution model for the diffusion-weighted MR signal , 2007, NeuroImage.

[52]  Nikos Paragios,et al.  Handbook of Mathematical Models in Computer Vision , 2005 .

[53]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[54]  Laurent D. Cohen,et al.  A Metric Approach to Vector-Valued Image Segmentation , 2006, International Journal of Computer Vision.

[55]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[56]  Stephen J. Sangwine,et al.  Hypercomplex Fourier Transforms of Color Images , 2001, IEEE Transactions on Image Processing.

[57]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[58]  Rafael Molina,et al.  3.7 – Multichannel Image Recovery , 2005 .

[59]  W. Eric L. Grimson,et al.  Model-based curve evolution technique for image segmentation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[60]  Jie Yang,et al.  Color Texture Segmentation Using Quaternion-Gabor Filters , 2006, 2006 International Conference on Image Processing.

[61]  Guillermo Sapiro,et al.  Color Snakes , 1997, Comput. Vis. Image Underst..

[62]  Daniel Cremers,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 a Combinatorial Solution for Model-based Image Segmentation and Real-time Tracking , 2022 .