Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse (South of France)

Summary This work deals with a rainfall-discharge model applied to a well known karst aquifer. A new approach is developed in order to minimize the fitting parameters: here, some of the model parameters do not result from a simple fitting, as it was the case with earlier models, i.e., some of them were assessed from the hydrograph analysis. The conceptual model of the functioning is based on a production function based on a simple calculation of effective rainfall and a transfer function consisting of two reservoirs. A slow discharge reservoir transfers the low flow and a rapid discharge reservoir feeds the high flow. The model has three fitted parameters plus one for its initialisation. Three parameters are deduced from the hydrograph analysis over the entire time series. For example, the recession coefficient of the slow discharge reservoir is determined from the hydrodynamic analysis of the recession [Mangin, A., 1975. Contribution a l’etude hydrodynamique des aquiferes karstiques. 3eme partie. Constitution et fonctionnement des aquiferes karstiques. Annales de Speleologie, 30 (1), 210–124]. This model was tested over a ten years period on the Fontaine de Vaucluse French karst system. The first hydrological year is used for fitting the model; the nine other cycles validate the modelling. The good quality of the model is proved by the Nash criterion of 92.3% on the validation period. Moreover, the simulation results were validated by a statistical analysis of measured and simulated time series. The model successfully simulates both the high and low flow at the same time. Also it estimates the water volumes available in the different parts of the aquifer and it proposes a management tool capable of predicting the evolution of the discharge in different climate conditions.

[1]  Damir Jukić,et al.  Composite transfer functions for karst aquifers , 2003 .

[2]  R. Laurent,et al.  Puig J.M. (1987). Le système karstique de la Fontaine de Vaucluse. Thèse 3ème cycle, Fac. Sc. d'Avignon, Géologie appliquée - mention Hydrogéologie , 1987 .

[3]  P. Fleury Sources sous-marines et aquifères karstiques côtiers méditerranéens : Fonctionnement et caractérisation , 2005 .

[4]  D. Labat,et al.  Rainfall runoff relations for karstic springs. Part I: convolution and spectral analyses , 2000 .

[5]  S. Bergström,et al.  DEVELOPMENT OF A CONCEPTUAL DETERMINISTIC RAINFALL-RUNOFF MODEL , 1973 .

[6]  Christelle Batiot Carbone organique total (COT) et magnésium (Mg2+) : deux traceurs complémentaires du temps de séjour dans l'aquifère karstiqueTotal Organic Carbon (TOC) and magnesium (Mg2+): two complementary tracers of residence time in karstic systems , 2003 .

[7]  Yonghong Hao,et al.  A gray system model for studying the response to climatic change: The Liulin karst springs, China , 2006 .

[8]  Demetris Koutsoyiannis,et al.  A multicell karstic aquifer model with alternative flow equations , 2006 .

[9]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[10]  J. Perrin A conceptual model of flow and transport in a karst aquifer based on spatial and temporal variations of natural tracers , 2003 .

[11]  M. Zare,et al.  Application of spectral analysis of daily water level and spring discharge hydrographs data for comparing physical characteristics of karstic aquifers , 2005 .

[12]  Luc Aquilina,et al.  Water storage and transfer in the epikarst of karstic systems during high flow periods , 2006 .

[13]  G. M. Zuppi,et al.  Recent carbonate rock formation in the Northern Adriatic Sea: hydrogeological and geotechnical implications , 2000 .

[14]  A. Jakeman,et al.  Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments , 1990 .

[15]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[16]  Y. Karam Essais de modélisation des écoulements dans un aquifère karstique : exemple de la source du Lez (Hérault, France) , 1989 .

[17]  C. W. Thornthwaite,et al.  Instructions and tables for computing potential evapotranspiration and the water balance , 1955 .

[18]  J. Mudry,et al.  Carbon 13 of TDIC to quantify the role of the unsaturated zone: the example of the Vaucluse karst systems (Southeastern France) , 2003 .

[19]  B. Ladouche,et al.  Characterizing a coastal karst aquifer using an inverse modeling approach: The saline springs of Thau, southern France , 2004 .

[20]  B. Blavoux,et al.  Bilan, fonctionnement et protection du système karstique de la Fontaine de Vaucluse (sud-est de la France) , 1992 .

[21]  G. Klubertanz,et al.  Stochastic discrete model of karstic networks , 2004 .

[22]  B. Marsaud Structure et fonctionnement de la zone noyee des karsts a partir des resultats experimentaux , 1996 .

[23]  Alon Rimmer,et al.  Modelling precipitation-streamflow processes in karst basin: The case of the Jordan River sources, Israel , 2006 .

[24]  C. Wicks,et al.  Modeling of storm responses in conduit flow aquifers with reservoirs , 1998 .

[25]  D. Labat,et al.  Rainfall–runoff relations for karstic springs: multifractal analyses , 2002 .

[26]  Analytical 1D dual-porosity equivalent solutions to 3D discrete single-continuum models. Application to karstic spring hydrograph modelling , 2002, 1108.5484.

[27]  Paul Williams,et al.  Karst Geomorphology and Hydrology , 1989 .

[28]  F. Einsiedl Flow system dynamics and water storage of a fissured-porous karst aquifer characterized by artificial and environmental tracers , 2005 .

[29]  A. Guilbot,et al.  Ajustement et réglage des modèles déterministes méthode de calage des paramètres , 1971 .

[30]  E. S. Lee,et al.  A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers , 2001 .

[31]  Damir Jukić,et al.  Nonlinear kernel functions for karst aquifers , 2006 .

[32]  E. Peterson,et al.  Assessing the importance of conduit geometry and physical parameters in karst systems using the storm water management model (SWMM) , 2006 .

[33]  J. Perrin,et al.  Epikarst storage in a karst aquifer: a conceptual model based on isotopic data, Milandre test site, Switzerland , 2003 .

[34]  A. Mangin,et al.  Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France) , 1998 .

[35]  Luc Aquilina,et al.  Inverse modeling of the hydrological and the hydrochemical behavior of hydrosystems: Characterization of Karst System Functioning , 2001 .

[36]  C. Perrin,et al.  Improvement of a parsimonious model for streamflow simulation , 2003 .

[37]  D. Labat,et al.  Rainfall-runoff relations for karstic springs. Part II: Continuous wavelet and discrete orthogonal multiresolution analyses. , 2000 .

[38]  A. Mangin Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale , 1984 .

[39]  Michael E. Barrett,et al.  Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA , 2003 .

[40]  P. Jeannin Modeling flow in phreatic and epiphreatic Karst conduits in the Hölloch Cave (Muotatal, Switzerland) , 2001 .

[41]  M. Bakalowicz Karst groundwater: a challenge for new resources , 2005 .