Theorem proving for all: equational reasoning in liquid Haskell (functional pearl)
暂无分享,去创建一个
Graham Hutton | David Van Horn | Joachim Breitner | Niki Vazou | Rose Kunkel | G. Hutton | Niki Vazou | Joachim Breitner | Rose Kunkel
[1] Clark W. Barrett,et al. The SMT-LIB Standard Version 2.0 , 2010 .
[2] Graham Hutton,et al. Calculating correct compilers , 2015, Journal of Functional Programming.
[3] J. McKinna. FUNCTIONAL PEARL A type-correct , stack-safe , provably correct expression compiler in Epigram , 2006 .
[4] Richard A. Eisenberg,et al. Dependent Types in Haskell: Theory and Practice , 2016, ArXiv.
[5] Joachim Breitner. A promise checked is a promise kept: inspection testing , 2018, Haskell@ICFP.
[6] Frank Pfenning,et al. Refinement types for ML , 1991, PLDI '91.
[7] Stephanie Weirich,et al. Total Haskell is reasonable Coq , 2017, CPP.
[8] Niki Vazou,et al. Liquid Haskell: Haskell as a Theorem Prover , 2016 .
[9] Yves Bertot,et al. Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions , 2010 .
[10] Sophia Drossopoulou,et al. Zeno: An Automated Prover for Properties of Recursive Data Structures , 2012, TACAS.
[11] Tobias Nipkow,et al. Structured Proofs in Isar/HOL , 2002, TYPES.
[12] Richard S. Bird,et al. An introduction to the theory of lists , 1987 .
[13] Lawrence Charles Paulson,et al. Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .
[14] Graham Hutton,et al. Programming in Haskell , 2007 .
[15] K. Rustan M. Leino,et al. Verified Calculations , 2013, VSTTE.
[16] Leonidas Lampropoulos,et al. A tale of two provers: verifying monoidal string matching in liquid Haskell and Coq , 2017, Haskell.
[17] U. Norell,et al. Towards a practical programming language based on dependent type theory , 2007 .
[18] Andy Gill,et al. Reasoning with the HERMIT: tool support for equational reasoning on GHC core programs , 2015, Haskell.
[19] Richard S. Bird,et al. Pearls of Functional Algorithm Design , 2010 .
[20] Florian Haftmann,et al. From higher-order logic to Haskell: there and back again , 2010, PEPM '10.
[21] Philip Wadler,et al. Refinement reflection: complete verification with SMT , 2017, Proc. ACM Program. Lang..
[22] K. Rustan M. Leino,et al. Trigger Selection Strategies to Stabilize Program Verifiers , 2016, CAV.
[23] K. Rustan M. Leino,et al. Dafny: An Automatic Program Verifier for Functional Correctness , 2010, LPAR.
[24] Pierre-Yves Strub,et al. Dependent types and multi-monadic effects in F* , 2016, POPL.
[25] Edwin Brady,et al. Idris, a general-purpose dependently typed programming language: Design and implementation , 2013, Journal of Functional Programming.
[26] Simon L. Peyton Jones,et al. HALO: haskell to logic through denotational semantics , 2013, POPL.
[27] Ranjit Jhala,et al. Refinement types for Haskell , 2014, ICFP.
[28] Jeremy Avigad,et al. The Lean Theorem Prover (System Description) , 2015, CADE.