Linear sets from projection of Desarguesian spreads

Every linear set in a Galois space is the projection of a subgeometry, and most known characterizations of linear sets are given under this point of view. For instance, scattered linear sets of pseudoregulus type are obtained by considering a Desarguesian spread of a subgeometry and projecting from a vertex which is spanned by all but two director spaces. In this paper we introduce the concept of linear sets of $h$-pseudoregulus type, which turns out to be projected from the span of an arbitrary number of director spaces of a Desarguesian spread of a subgeometry. Among these linear sets, we characterize those which are $h$-scattered and solve the equivalence problem between them; a key role is played by an algebraic tool recently introduced in the literature and known as Moore exponent set. As a byproduct, we classify asymptotically $h$-scattered linear sets of $h$-pseudoregulus type.

[1]  Giuseppe Marino,et al.  Generalising the Scattered Property of Subspaces , 2021, Combinatorica.

[2]  Giuseppe Marino,et al.  Maximum rank-distance codes with maximum left and right idealisers. , 2018, 1807.08774.

[3]  Michel Lavrauw,et al.  Scattered Spaces with Respect to a Spread in PG(n,q) , 2000 .

[4]  John Sheekey,et al.  A new family of linear maximum rank distance codes , 2015, Adv. Math. Commun..

[5]  A. Canteaut,et al.  CONTEMPORARY DEVELOPMENTS IN FINITE FIELDS AND APPLICATIONS , 2016 .

[6]  Michel Lavrauw,et al.  Scattered Linear Sets and Pseudoreguli , 2013, Electron. J. Comb..

[7]  Giuseppe Marino,et al.  On Fq-linear sets of PG(3, q3) and semifields , 2007, J. Comb. Theory, Ser. A.

[8]  Daniele Bartoli,et al.  A new family of maximum scattered linear sets in $\mathrm{PG}(1,q^6)$ , 2019 .

[9]  Eliakim Hastings Moore A two-fold generalization of Fermat’s theorem , 1896 .

[10]  Guglielmo Lunardon,et al.  MRD-codes and linear sets , 2017, J. Comb. Theory, Ser. A.

[11]  Giuseppe Marino,et al.  MRD-codes arising from the trinomial x q +x q 3 +cx q 5 ⊕F q 6 [x]. , 2019 .

[12]  Michel Lavrauw,et al.  Field reduction and linear sets in finite geometry , 2013, 1310.8522.

[13]  Guglielmo Lunardon,et al.  Translation ovoids of orthogonal polar spaces , 2004 .

[14]  Ferdinando Zullo,et al.  Identifiers for MRD-codes , 2018, Linear Algebra and its Applications.

[15]  Giuseppe Marino,et al.  New maximum scattered linear sets of the projective line , 2017, Finite Fields Their Appl..

[16]  Olga Polverino,et al.  Linear sets in finite projective spaces , 2010, Discret. Math..

[17]  G. Marino,et al.  A special class of scattered subspaces , 2019, 1906.10590.

[18]  Rocco Trombetti,et al.  Generalized Twisted Gabidulin Codes , 2015, J. Comb. Theory A.

[19]  Daniele Bartoli,et al.  A new family of maximum scattered linear sets in PG(1, q6) , 2020, Ars Math. Contemp..

[20]  R. Trombetti,et al.  Maximum scattered linear sets of pseudoregulus type and the Segre variety $\mathcal{S}_{n,n}$ , 2012, 1211.3604.

[21]  Ernst M. Gabidulin,et al.  The new construction of rank codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[22]  John Sheekey,et al.  MRD Codes: Constructions and Connections , 2019, 1904.05813.

[23]  John Sheekey,et al.  Rank-metric codes, linear sets, and their duality , 2018, Des. Codes Cryptogr..

[24]  Guglielmo Lunardon,et al.  Blocking Sets and Derivable Partial Spreads , 2001 .

[25]  Giuseppe Marino,et al.  Maximum scattered linear sets and MRD-codes , 2017, 1701.06831.

[26]  Gabriele Nebe,et al.  Automorphism groups of Gabidulin-like codes , 2016, ArXiv.

[27]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[28]  Michel Lavrauw,et al.  Scattered Spaces in Galois Geometry , 2015, 1512.05251.

[29]  Rocco Trombetti,et al.  On kernels and nuclei of rank metric codes , 2016, ArXiv.

[30]  Guglielmo Lunardon,et al.  Normal Spreads , 1999 .

[31]  Beniamino Segre,et al.  Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane , 1964 .

[32]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[33]  Daniele Bartoli,et al.  Asymptotics of Moore exponent sets , 2020, J. Comb. Theory, Ser. A.