Effect of Sparse Decomposition on Various ICA Algorithms With Application to Image Data

In this paper we demonstrate the effect of sparse decomposition on various Independent Component Analysis (ICA) algorithms for separating simultaneous linear mixture of independent 2-D signals (images). We will show using simulated results that sparse decomposition before Kernel ICA (Sparse Kernel ICA) algorithm produces the best results as compared to other ICA algorithms.

[1]  Edward H. Adelson,et al.  Separating reflections and lighting using independent components analysis , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[2]  Tauseef Ali,et al.  Robust Precise Iris Detection , 2008 .

[3]  Juan José Murillo-Fuentes,et al.  Optimal Pairwise Fourth-Order Independent Component Analysis , 2006, IEEE Transactions on Signal Processing.

[4]  Visa Koivunen,et al.  Pearson System based Method for Blind Separation , 2000 .

[5]  John W. Fisher,et al.  ICA Using Spacings Estimates of Entropy , 2003, J. Mach. Learn. Res..

[6]  Barak A. Pearlmutter,et al.  Blind source separation by sparse decomposition , 2000, SPIE Defense + Commercial Sensing.

[7]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[8]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[9]  Yehoshua Y. Zeevi,et al.  BLIND SEPARATION OF REFLECTIONS USING SPARSE ICA , 2003 .

[10]  Jean-Franois Cardoso High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.