Evaluation of very high to medium resolution multispectral satellite imagery for geoarchaeology in arid regions – Case study from Jabali, Yemen

[1]  Anne B. Kahle,et al.  Mapping of hydrothermal alteration in the Cuprite mining district, Nevada, using aircraft scanner images for the spectral region 0.46 to 2.36µm , 1977 .

[2]  M. Grolier,et al.  Geologic map of the Yemen Arab Republic (San'a') , 1978 .

[3]  S. Drury Image interpretation in geology , 1987 .

[4]  A. Goetz,et al.  Terrestrial imaging spectroscopy , 1988 .

[5]  C. Ramboz,et al.  Jabali, a Zn-Pb-(Ag) carbonate-hosted deposit associated with Late Jurassic rifting in Yemen , 1994 .

[6]  Í. Vitorello,et al.  Spectral properties of geologic materials in the 400-to 2,500 nm range : Review for applications to mineral exploration and lithologic mapping , 1996 .

[7]  Bruno Marcolongo,et al.  L'abandon du système d'irrigation qatabanite dans la vallée du wadi Bayhan (Yémen): analyse géo-archéologique , 1997 .

[8]  J. Deroin,et al.  A comparison of the potential for using optical and SAR data for geological mapping in an arid region: The Atar site, Western Sahara, Mauritania , 1998 .

[9]  Robert J. Stern,et al.  Mapping gossans in arid regions with Landsat TM and SIR-C images: the Beddaho Alteration Zone in northern Eritrea , 2000 .

[10]  B. Windley,et al.  Precambrian basement character of Yemen and correlations with Saudi Arabia and Somalia , 2001 .

[11]  M. Fowler Satellite remote sensing and archaeology: a comparative study of satellite imagery of the environs of Figsbury Ring, Wiltshire , 2002 .

[12]  Florian Téreygeol,et al.  Nouvelles recherches sur la mine d'al-Jabalî , 2003 .

[13]  Robert J. Stern,et al.  Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies , 2003 .

[14]  José Alexandre Melo Demattê,et al.  Visible–NIR reflectance: a new approach on soil evaluation , 2004 .

[15]  M. Fowler,et al.  Detection of archaeological crop marks on declassified CORONA KH‐4B intelligence satellite photography of Southern England , 2005 .

[16]  M. Altaweel The use of ASTER satellite imagery in archaeological contexts , 2005 .

[17]  Rosa Lasaponara,et al.  QuickBird‐based analysis for the spatial characterization of archaeological sites: Case study of the Monte Serico medieval village , 2005 .

[18]  Dominic Powlesland,et al.  Beneath the sand—remote sensing, archaeology, aggregates and sustainability: a case study from Heslerton, the Vale of Pickering, North Yorkshire, UK , 2006 .

[19]  Rosa Lasaponara,et al.  On the potential of QuickBird data for archaeological prospection , 2006 .

[20]  Ponisseril Somasundaran,et al.  ENCYCLOPEDIA OF Surface and Colloid Science , 2006 .

[21]  Audrey Peli Les mines de la péninsule Arabique d’après les auteurs arabes (VIIe - XIIe siècles) , 2006 .

[22]  J. Wiseman,et al.  Multispectral and synthetic aperture radar remote‐sensing‐based models for holocene coastline development in the Ambracian Gulf, Epirus, Greece , 2006 .

[23]  Cartographie géologique télé-analytique. influence de la résolution spatiale. application à la région de kawkaban-sana'a-ma'rib (république du yémen) , 2006 .

[24]  A. Desrochers,et al.  Mineral-Potential Mapping for MVT Deposits with Limited Data Sets Using Landsat Data and Geological Evidence in the Borden Basin, Northern Baffin Island, Nunavut, Canada , 2007 .

[25]  Alain De Wulf,et al.  Satellite imagery and archaeology: the example of CORONA in the Altai Mountains , 2006 .

[26]  R. Lasaponara,et al.  Detection of archaeological crop marks by using satellite QuickBird multispectral imagery , 2007 .

[27]  V. D. Laet,et al.  Methods for the extraction of archaeological features from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey) , 2007 .

[28]  A. Sarris,et al.  Detection of exposed and subsurface archaeological remains using multi-sensor remote sensing , 2007 .

[29]  Hans Tømmervik,et al.  Monitoring archaeological sites in a changing landscape–using multitemporal satellite remote sensing as an ‘early warning’ method for detecting regrowth processes† , 2007 .

[30]  R. Lasaponara,et al.  Investigating the spectral capability of QuickBird data to detect archaeological remains buried under vegetated and not vegetated areas , 2007 .

[31]  Kevin White,et al.  Spectral properties, iron oxide content and provenance of Namib dune sands , 2007 .

[32]  C. Briese,et al.  Archaeological prospection of forested areas using full-waveform airborne laser scanning , 2008 .

[33]  Magaly Koch,et al.  Spatial and spectral analysis of soil surface properties for an archaeological area in Aksum, Ethiopia, applying high and medium resolution data , 2008 .

[34]  Julie M. Gallagher,et al.  Using LiDAR to detect cultural resources in a forested environment: an example from Isle Royale National Park, Michigan, USA , 2008 .

[35]  Takeshi Inomata,et al.  Evaluating the use of IKONOS satellite imagery in lowland Maya settlement archaeology , 2008 .

[36]  N. Masini,et al.  Remote sensing techniques for reconstructing a vast Neolithic settlement in Southern Italy , 2009 .