Phaseless PCA: Low-Rank Matrix Recovery from Column-wise Phaseless Measurements

We study the problem of recovering a low-rank matrix, X, from magnitude-only observations of random linear projections of its columns (phaseless measurements). We develop a new approach, called Phase Retrieval Low Rank (PReLow), that borrows ideas from a very recent non-convex phase retrieval approach, called truncated Wirtinger flow (TWF). We show via extensive numerical experiments that, when the rank of X is small compared to its dimensions, PReLow significantly outperforms TWF which operates on one column of X at a time (does not use its low-rank structure).

[1]  Chinmay Hegde,et al.  Low Rank Fourier Ptychography , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[2]  Michael B. Wakin,et al.  Sketched SVD: Recovering Spectral Features from Compressive Measurements , 2012, ArXiv.

[3]  Aarti Singh,et al.  Extreme Compressive Sampling for Covariance Estimation , 2015, IEEE Transactions on Information Theory.

[4]  Inderjit S. Dhillon,et al.  Guaranteed Rank Minimization via Singular Value Projection , 2009, NIPS.

[5]  Roman Vershynin,et al.  High-Dimensional Probability , 2018 .

[6]  Namrata Vaswani,et al.  Provable Dynamic Robust PCA or Robust Subspace Tracking , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[7]  Yonina C. Eldar,et al.  Phase Retrieval: Stability and Recovery Guarantees , 2012, ArXiv.

[8]  Zhi-Pei Liang,et al.  SPATIOTEMPORAL IMAGINGWITH PARTIALLY SEPARABLE FUNCTIONS , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[9]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[10]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[11]  Yonina C. Eldar,et al.  Subspace Learning with Partial Information , 2014, J. Mach. Learn. Res..

[12]  Babak Hassibi,et al.  Sparse phase retrieval: Convex algorithms and limitations , 2013, 2013 IEEE International Symposium on Information Theory.

[13]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[14]  Gang Wang,et al.  Sparse Phase Retrieval via Truncated Amplitude Flow , 2016, IEEE Transactions on Signal Processing.

[15]  Prateek Jain,et al.  Nearly Optimal Robust Matrix Completion , 2016, ICML.

[16]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[17]  Namrata Vaswani,et al.  NEARLY OPTIMAL ROBUST SUBSPACE TRACKING: A UNIFIED APPROACH , 2017, 2018 IEEE Data Science Workshop (DSW).

[18]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[19]  Richard A. Frazin,et al.  A Monte Carlo Technique for Large-Scale Dynamic Tomography , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[20]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[21]  Emmanuel J. Candès,et al.  Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements , 2010, ArXiv.

[22]  Constantine Caramanis,et al.  Fast Algorithms for Robust PCA via Gradient Descent , 2016, NIPS.

[23]  Mathews Jacob,et al.  Accelerated Dynamic MRI Exploiting Sparsity and Low-Rank Structure: k-t SLR , 2011, IEEE Transactions on Medical Imaging.

[24]  Qun Wan,et al.  Compressive 1-D signal recovery from magnitude-only measurements via convex optimization , 2013, 2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013).

[25]  Zhi-Quan Luo,et al.  Guaranteed Matrix Completion via Non-Convex Factorization , 2014, IEEE Transactions on Information Theory.

[26]  Yonina C. Eldar,et al.  STFT Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms , 2015, IEEE Journal of Selected Topics in Signal Processing.

[27]  Chinmay Hegde,et al.  Model Corrected Low Rank Ptychography , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[28]  Yonina C. Eldar,et al.  Low-Rank Phase Retrieval , 2016, IEEE Transactions on Signal Processing.

[29]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging , 2014, ArXiv.

[30]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[31]  Yuejie Chi,et al.  Streaming PCA and Subspace Tracking: The Missing Data Case , 2018, Proceedings of the IEEE.

[32]  Martin J. Wainwright,et al.  Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.

[33]  Sven-Gustav Häggman,et al.  Simplified bounds for the complementary error function; application to the performance evaluation of signal-processing systems , 2004, 2004 12th European Signal Processing Conference.

[34]  John D. Lafferty,et al.  A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements , 2015, NIPS.

[35]  Xiaodong Li,et al.  Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow , 2015, ArXiv.

[36]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[37]  Yoram Bresler,et al.  Near-Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices Via Sparse Power Factorization , 2013, IEEE Transactions on Information Theory.

[38]  Namrata Vaswani,et al.  Time invariant error bounds for modified-CS based sparse signal sequence recovery , 2013, 2013 IEEE International Symposium on Information Theory.

[39]  Ioannis Mitliagkas Streaming PCA with Many Missing Entries , 2014 .

[40]  Yoram Bresler,et al.  ADMiRA: Atomic Decomposition for Minimum Rank Approximation , 2009, IEEE Transactions on Information Theory.

[41]  Namrata Vaswani,et al.  Support-Predicted Modified-CS for recursive robust principal components' Pursuit , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[42]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[43]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[44]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, ISIT.

[45]  Yuxin Chen,et al.  Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems , 2015, NIPS.

[46]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging: A contemporary overview , 2015, IEEE Signal Processing Magazine.

[47]  Andrea J. Goldsmith,et al.  Exact and Stable Covariance Estimation From Quadratic Sampling via Convex Programming , 2013, IEEE Transactions on Information Theory.

[48]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[49]  Ashok Veeraraghavan,et al.  Toward Long-Distance Subdiffraction Imaging Using Coherent Camera Arrays , 2015, IEEE Transactions on Computational Imaging.

[50]  Yonina C. Eldar,et al.  Sparsity Based Sub-wavelength Imaging with Partially Incoherent Light via Quadratic Compressed Sensing References and Links , 2022 .

[51]  Jared Tanner,et al.  Normalized Iterative Hard Thresholding for Matrix Completion , 2013, SIAM J. Sci. Comput..

[52]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[53]  Max Simchowitz,et al.  Low-rank Solutions of Linear Matrix Equations via Procrustes Flow , 2015, ICML.

[54]  Irène Waldspurger,et al.  Phase Retrieval With Random Gaussian Sensing Vectors by Alternating Projections , 2016, IEEE Transactions on Information Theory.

[55]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[56]  Hanchao Qi,et al.  Invariance of principal components under low-dimensional random projection of the data , 2012, 2012 19th IEEE International Conference on Image Processing.

[57]  Yonina C. Eldar,et al.  Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow , 2016, IEEE Transactions on Information Theory.

[58]  Yuejie Chi,et al.  Reshaped Wirtinger Flow and Incremental Algorithm for Solving Quadratic System of Equations , 2016 .

[59]  A. Robert Calderbank,et al.  PETRELS: Parallel Subspace Estimation and Tracking by Recursive Least Squares From Partial Observations , 2012, IEEE Transactions on Signal Processing.

[60]  Yonina C. Eldar,et al.  An algorithm for exact super-resolution and phase retrieval , 2013, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[61]  Namrata Vaswani,et al.  PHASELESS SUBSPACE TRACKING , 2018, 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[62]  Prateek Jain,et al.  Phase Retrieval Using Alternating Minimization , 2013, IEEE Transactions on Signal Processing.

[63]  Yonina C. Eldar,et al.  Sparsity-based single-shot sub-wavelength coherent diffractive imaging , 2011, 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel.

[64]  Sujay Sanghavi,et al.  The Local Convexity of Solving Systems of Quadratic Equations , 2015, 1506.07868.

[65]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[66]  Babak Hassibi,et al.  Recovery of sparse 1-D signals from the magnitudes of their Fourier transform , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[67]  David P. Woodruff Sketching as a Tool for Numerical Linear Algebra , 2014, Found. Trends Theor. Comput. Sci..

[68]  Yingbin Liang,et al.  A Nonconvex Approach for Phase Retrieval: Reshaped Wirtinger Flow and Incremental Algorithms , 2017, J. Mach. Learn. Res..