Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods

Using the age- and sex-specific data of 14 developed countries, we compare the point and interval forecast accuracy and bias of ten principal component methods for forecasting mortality rates and life expectancy. The ten methods are variants and extensions of the Lee-Carter method. Based on one-step forecast errors, the weighted Hyndman-Ullah method provides the most accurate point forecasts of mortality rates and the Lee-Miller method is the least biased. For the accuracy and bias of life expectancy, the weighted Hyndman-Ullah method performs the best for female mortality and the Lee-Miller method for male mortality. While all methods underestimate variability in mortality rates, the more complex Hyndman-Ullah methods are more accurate than the simpler methods. The weighted Hyndman-Ullah method provides the most accurate interval forecasts for mortality rates, while the robust Hyndman-Ullah method provides the best interval forecast accuracy for life expectancy.

[1]  J. Šiaulys,et al.  LEE–CARTER MORTALITY FORECASTING , 2012 .

[2]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[3]  J. Bongaarts Long-range trends in adult mortality: Models and projection methods , 2005, Demography.

[4]  Ronald Lee,et al.  Evaluating the performance of the lee-carter method for forecasting mortality , 2001, Demography.

[5]  Michel Denuit,et al.  A multivariate time series approach to projected life tables , 2009 .

[6]  Han Lin Shang,et al.  Forecasting functional time series , 2009 .

[7]  D. Swanson,et al.  Demographic Forecasting , 2009 .

[8]  H. Booth,et al.  Mortality Modelling and Forecasting: a Review of Methods , 2008, Annals of Actuarial Science.

[9]  Rob J Hyndman,et al.  Automatic Time Series Forecasting: The forecast Package for R , 2008 .

[10]  Rob J Hyndman,et al.  Forecasting with Exponential Smoothing: The State Space Approach , 2008 .

[11]  Rob J Hyndman,et al.  Stochastic population forecasts using functional data models for mortality, fertility and migration , 2008 .

[12]  Steven Haberman,et al.  On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee-Carter modelling , 2008 .

[13]  David Blake,et al.  Mortality Density Forecasts: An Analysis of Six Stochastic Mortality Models , 2008 .

[14]  A. Renshaw,et al.  Mortality, longevity and experiments with the Lee–Carter model , 2008, Lifetime data analysis.

[15]  Rob J. Hyndman,et al.  Forecasting with Exponential Smoothing , 2008 .

[16]  Stanley K. Smith,et al.  Precision, bias, and uncertainty for state population forecasts: an exploratory analysis of time series models , 2007 .

[17]  Rob J. Hyndman,et al.  Robust forecasting of mortality and fertility rates: A functional data approach , 2007, Comput. Stat. Data Anal..

[18]  Andreas Karlsson,et al.  Statistical Demography and Forecasting , 2007 .

[19]  Rob J Hyndman,et al.  Forecasting age‐specific breast cancer mortality using functional data models , 2007, Statistics in medicine.

[20]  Michael A. Salsburg,et al.  Modeling and Forecasting , 2007, Int. CMG Conference.

[21]  Rob J. Hyndman,et al.  Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions , 2006 .

[22]  Marc Goovaerts,et al.  Insurance: Mathematics and Economics , 2006 .

[23]  R. Sala,et al.  A comparison of models for dynamic life tables. Application to mortality data from the Valencia Region (Spain) , 2006, Lifetime data analysis.

[24]  Steven Haberman,et al.  A cohort-based extension to the Lee-Carter model for mortality reduction factors , 2006 .

[25]  Arnold F. Shapiro,et al.  Evaluating and extending the Lee–Carter model for mortality forecasting: Bootstrap confidence interval , 2006 .

[26]  Anne Goujon,et al.  VIENNA INSTITUTE OF DEMOGRAPHY , 2006 .

[27]  Heather Booth,et al.  Demographic forecasting: 1980 to 2005 in review , 2006 .

[28]  PIET DE JONG,et al.  Extending Lee–Carter Mortality Forecasting , 2006 .

[29]  Ingrid Van Keilegom,et al.  Bootstrapping the Poisson log-bilinear model for mortality forecasting , 2005 .

[30]  Paul H. C. Eilers,et al.  Smoothing and forecasting mortality rates , 2004 .

[31]  Hans Lundström,et al.  Mortality Forecasting and Trend Shifts: an Application of the Lee–Carter Model to Swedish Mortality Data * , 2004 .

[32]  Wolfgang Lutz,et al.  Introduction: How to Deal with Uncertainty in Population Forecasting? , 2004 .

[33]  Heather Booth,et al.  Evaluation of the Variants of the Lee-Carter Method of Forecasting Mortality: A Multi-Country Comparison , 2004 .

[34]  Steven Haberman,et al.  Lee–Carter mortality forecasting with age-specific enhancement , 2003 .

[35]  Steven Haberman,et al.  On the forecasting of mortality reduction factors , 2003 .

[36]  Steven Haberman,et al.  Lee-Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections , 2003 .

[37]  Nico Keilman,et al.  Perspectives on mortality forecasting , 2003 .

[38]  P. Sarda,et al.  SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .

[39]  Michel Denuit,et al.  A Poisson log-bilinear regression approach to the construction of projected lifetables , 2002 .

[40]  Nico Keilman,et al.  Why population forecasts should be probabilistic - illustrated by the case of Norway , 2002 .

[41]  J. Vaupel,et al.  Broken Limits to Life Expectancy , 2002, Science.

[42]  Craig B. Borkowf,et al.  Time-Series Forecasting , 2002, Technometrics.

[43]  Kevin M. White Longevity Advances in High‐Income Countries, 1955–96 , 2002 .

[44]  M. Hubert,et al.  A fast method for robust principal components with applications to chemometrics , 2002 .

[45]  J. Maindonald,et al.  Applying Lee-Carter under conditions of variable mortality decline , 2002, Population studies.

[46]  Montserrat Guillén,et al.  Recent Mortality Trends in the Spanish Population , 2002 .

[47]  A. Prskawetz,et al.  Examining structural shifts in mortality using the Lee-Carter method , 2001 .

[48]  Andrew J. G. Cairns,et al.  A discussion of parameter and model uncertainty in insurance , 2000 .

[49]  Nan Li,et al.  A universal pattern of mortality decline in the G7 countries , 2000, Nature.

[50]  V. Kannisto Health and Mortality Among Elderly Populations , 1998 .

[51]  L. Carter,et al.  The role of population size in the determination and prediction of population forecast errors: An evaluation using conifidence intervals for subcounty areas , 1998 .

[52]  J M Alho,et al.  Scenarios, Uncertainty and Conditional Forecasts of the World Population , 1997, Journal of the Royal Statistical Society. Series A,.

[53]  Alan D. Lopez,et al.  Health and Mortality among Elderly Populations , 1996 .

[54]  Lin Jiang Changing kinship structure and its implications for old-age support in urban and rural China. , 1995 .

[55]  R. Lee,et al.  [Modeling and projecting mortality in Chile]. , 1994, Notas de poblacion.

[56]  David A. Swanson,et al.  A New Short-Term County Population Projection Method , 1994 .

[57]  Chris Chatfield,et al.  Calculating Interval Forecasts , 1993 .

[58]  R. Lee,et al.  Modeling and forecasting U.S. sex differentials in mortality. , 1992, International journal of forecasting.

[59]  Ronald Lee,et al.  Modeling and forecasting U. S. mortality , 1992 .

[60]  J. Ramsay Monotone Regression Splines in Action , 1988 .

[61]  R. Horvath,et al.  International Union for the Scientific Study of Population , 1973 .

[62]  O. William Journal Of The American Statistical Association V-28 , 1932 .

[63]  TWO-WEEK Loan COpy,et al.  University of California , 1886, The American journal of dental science.