Nanoscale ferroelectrics: processing, characterization and future trends

This review paper summarizes recent advances in the quickly developing field of nanoscale ferroelectrics, analyses its current status and considers potential future developments. The paper presents a brief survey of the fabrication methods of ferroelectric nanostructures and investigation of the size effects by means of scanning probe microscopy. One of the focuses of the review will be the study of kinetics of nanoscale ferroelectric switching in inhomogeneous electrical and elastic fields. Another emphasis will be made on tailoring the electrical and mechanical properties of ferroelectrics with a viewpoint of fabrication of nanoscale domain structures.

[1]  Nava Setter,et al.  Direct observation of region by region suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin film capacitors with Pt electrodes , 1998 .

[2]  A M Bratkovsky,et al.  Smearing of phase transition due to a surface effect or a bulk inhomogeneity in ferroelectric nanostructures. , 2005, Physical review letters.

[3]  Angus I. Kingon,et al.  Direct studies of domain switching dynamics in thin film ferroelectric capacitors , 2005 .

[4]  Orlando Auciello,et al.  Nanoscale investigation of fatigue effects in Pb(Zr,Ti)O3 films , 1996 .

[5]  J. Melngailis,et al.  Focused ion-beam patterning of nanoscale ferroelectric capacitors , 1998 .

[6]  Seungbum Hong Nanoscale phenomena in ferroelectric thin films , 2004 .

[7]  Studies of the effects of ion irradiation on ferroelectric domains of triglycine sulfate single crystals on a nanometer scale , 2003 .

[8]  Kenji Kitamura,et al.  Microscale to nanoscale ferroelectric domain and surface engineering of a near-stoichiometric LiNbO3 crystal , 2003 .

[9]  Stephen Ducharme,et al.  Two-dimensional ferroelectric films , 1998, Nature.

[10]  Sergei V. Kalinin,et al.  Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces , 2002 .

[11]  E. Williams,et al.  Polarization relaxation kinetics and 180° domain wall dynamics in ferroelectric thin films , 2001 .

[12]  Calvin F. Quate,et al.  Scanning probes as a lithography tool for nanostructures , 1997 .

[13]  M. Tanaka,et al.  Polarization retention in SrBi2Ta2O9 thin films investigated at nanoscale , 2001 .

[14]  Woo Y. Lee,et al.  Well-ordered large-area arrays of epitaxial ferroelectric (Bi,La)4Ti3O12 nanostructures fabricated by gold nanotube-membrane lithography , 2005 .

[15]  R. Pankrath,et al.  Atomic force microscopy of domains and volume holograms in Sr 0.61 Ba 0.39 Nb 2 O 6 : C e 3 + , 2000 .

[16]  Yoshihiro Ishibashi,et al.  Note on Ferroelectric Domain Switching , 1971 .

[17]  G. Catalan,et al.  Strain gradients in epitaxial ferroelectrics , 2004, cond-mat/0411471.

[18]  Lucian Pintilie,et al.  Bi4Ti3O12 ferroelectric thin film ultraviolet detectors , 1998 .

[19]  U. Gösele,et al.  Mesoscopic ferroelectric cell arrays prepared by imprint lithography , 2003 .

[20]  G. Rohrer,et al.  Spatially Selective Photochemical Reduction of Silver on the Surface of Ferroelectric Barium Titanate , 2001 .

[21]  A. Gruverman,et al.  Switching properties of self-assembled ferroelectric memory cells , 1999 .

[22]  Gerold A. Schneider,et al.  Stress induced movement of ferroelastic domain walls in BaTiO3 single crystals evaluated by scanning force microscopy , 2001 .

[23]  Chi H. Lee,et al.  Ultrafast polarization switching in thin-film ferroelectrics , 2004 .

[24]  Hiroshi Tokumoto,et al.  Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy , 1998 .

[25]  Gerold A. Schneider,et al.  High-resolution characterization of piezoelectric ceramics by ultrasonic scanning force microscopy techniques , 2002 .

[26]  Ralf B. Wehrspohn,et al.  Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate , 2003 .

[27]  P. Günter,et al.  Deconvolution of topographic and ferroelectric contrast by noncontact and friction force microscopy , 1996 .

[28]  U. Gösele,et al.  Patterning and switching of nanosize ferroelectric memory cells , 1999 .

[29]  Ernst Meyer,et al.  Surface and domain structures of ferroelectric crystals studied with scanning force microscopy , 1993 .

[30]  A. Sigov,et al.  Porous silicon-based ferroelectric nanostructures , 2002 .

[31]  Orbital-selective Mott-Hubbard transition in the two-band Hubbard model , 2005, cond-mat/0504040.

[32]  Technology,et al.  Domain wall creep in epitaxial ferroelectric Pb(Zr(0.2)Ti(0.08)O(3) thin films. , 2002, Physical review letters.

[33]  L. Bellaiche,et al.  Ferroelectricity in barium titanate quantum dots and wires. , 2003, Physical review letters.

[34]  M. I. Molotskii *,et al.  Dynamics of ferroelectric domain formation in an atomic force microscope , 2005 .

[35]  A. Gruverman,et al.  Preface to Nanoscale Characterization of Ferroelectric Materials: Scanning Probe Microscopy Approach , 2004 .

[36]  R. Scholz,et al.  Ferroelectric epitaxial nanocrystals obtained by a self-patterning method , 2003 .

[37]  Y. Rosenwaks,et al.  Ferroelectric domain engineering using atomic force microscopy tip arrays in the domain breakdown regime , 2005 .

[38]  J. Brugger,et al.  Complex oxide nanostructures by pulsed laser deposition through nanostencils , 2005 .

[39]  S. K. Streiffer,et al.  Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films , 2002 .

[40]  D. Bonnell,et al.  Local behavior of complex materials: scanning probes and nano structure , 2003 .

[41]  G. Distler The real structure of crystals and selective nucleation at surface local long range active centres , 1968 .

[42]  Local electromechanical properties of ferroelectric materials for piezoelectric applications , 2004 .

[43]  Mervyn J Miles,et al.  A mechanical microscope: High speed atomic force microscopy , 2005 .

[44]  E. Yu,et al.  Characterization of AlxGa1−xAs/GaAs heterojunction bipolar transistor structures using cross-sectional scanning force microscopy , 2000 .

[45]  P. Beale,et al.  Properties of ceramic KNO3 thin-film memories☆ , 1988 .

[46]  Jung-Pyo Hong,et al.  Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope , 1999 .

[47]  Modeling of micro- and nano-scale domain recording by high-voltage atomic force microscopy in ferroelectric semiconductors , 2005, cond-mat/0505391.

[48]  P. Couturier Japan , 1988, The Lancet.

[49]  H. Fujisawa,et al.  Observations of Island Structures at the Initial Growth Stage of PbZrxTi1-xO3 Thin Films Prepared by Metalorganic Chemical Vapor Deposition , 2000 .

[50]  Yudin,et al.  Intrinsic ferroelectric coercive field , 2000, Physical review letters.

[51]  I. P. Batra,et al.  Phase Transition, Stability, and Depolarization Field in Ferroelectric Thin Films , 1973 .

[52]  N. Setter,et al.  Direct observation of inversely polarized frozen nanodomains in fatigued ferroelectric memory capacitors , 2003 .

[53]  O. Auciello,et al.  Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.

[54]  K. Bärner,et al.  Stable suspensions of ferroelectric BaTiO3-particles , 1988 .

[55]  R. Wiesendanger,et al.  Imaging of domain-inverted gratings in LiNbO3 by electrostatic force microscopy , 1997 .

[56]  Y. Rosenwaks,et al.  Ferroelectric domain breakdown. , 2003, Physical review letters.

[57]  J. Speck,et al.  Microstructural instability in single-crystal thin films , 1996 .

[58]  Jianbin Xu,et al.  Study of domain stability on (Pb0.76Ca0.24)TiO3 thin films using piezoresponse microscopy , 2002 .

[59]  Dong-Ki Min,et al.  Scanning resistive probe microscopy: Imaging ferroelectric domains , 2004 .

[60]  Kazushi Yamanaka,et al.  Quantitative elasticity evaluation by contact resonance in an atomic force microscope , 1998 .

[61]  Sergei V. Kalinin,et al.  Quantitative analysis of nanoscale switching in SrBi 2 Ta 2 O 9 thin films by piezoresponse force microscopy , 2004 .

[62]  J. Melngailis,et al.  Dynamics of ferroelastic domains in ferroelectric thin films , 2003, Nature materials.

[63]  Rainer Waser,et al.  Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices , 2003 .

[64]  J. Melngailis,et al.  Scaling of ferroelectric and piezoelectric properties in Pt/SrBi2Ta2O9/Pt thin films , 1999 .

[65]  Paul Muralt,et al.  Lithography-modulated self-assembly of small ferroelectric Pb(Zr, Ti)O3 single crystals , 2004 .

[66]  A. Gruverman,et al.  Nanoscale Characterisation of Ferroelectric Materials , 2004 .

[67]  H. Hamann,et al.  Thermally assisted recording beyond traditional limits , 2004 .

[68]  M. Molotskii Generation of ferroelectric domains in atomic force microscope , 2003 .

[69]  R. Wiesendanger,et al.  Surface structure of ferroelectric domains on the triglycine sulfate (010) surface , 1996 .

[70]  G. Distler,et al.  Interaction of Defect and Domain Structures of Triglycine Sulphate Crystals in Ferroelectric and Paraelectric States , 1968, Nature.

[71]  Jianbin Xu,et al.  In situ observation of the ferroelectric-paraelectric phase transition in a triglycine sulfate single crystal by variable-temperature electrostatic force microscopy , 2000 .

[72]  D. Ohlberg,et al.  Thermodynamics of the size and shape of nanocrystals: epitaxial Ge on Si(001). , 2000, Annual review of physical chemistry.

[73]  Paul Muralt,et al.  Size effect in mesoscopic epitaxial ferroelectric structures: Increase of piezoelectric response with decreasing feature size , 2002 .

[74]  Hari Singh Nalwa,et al.  Handbook of Low and High Dielectric Constant Materials and Their Applications , 1999 .

[75]  X. X. Liu,et al.  Scanning near-field acoustic study of ferroelectric BaTiO3ceramics , 2002 .

[76]  Sergei V. Kalinin,et al.  Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy , 2005 .

[77]  J. Dec,et al.  Study on surface and domain structures of PbTiO3 crystals by atomic force microscopy , 1998 .

[78]  C. M. Foster,et al.  Characteristics of PZT thin films as ultra-high density recording media , 1997 .

[79]  A. Kingon,et al.  Atomic force microscopy-based experimental setup for studying domain switching dynamics in ferroelectric capacitors , 2005 .

[80]  Yasuo Cho,et al.  Measuring ferroelectric polarization component parallel to the surface by scanning nonlinear dielectric microscopy , 2002 .

[81]  Rosalía Poyato,et al.  Stress-induced suppression of piezoelectric properties in PbTiO3:La thin films via scanning force microscopy , 2003 .

[82]  Jiyan Dai,et al.  Synthesis and piezoresponse of highly ordered Pb(Zr0.53Ti0.47)O3 nanowire arrays , 2004 .

[83]  H. Fujisawa,et al.  Structural control of self-assembled PbTiO3 nanoislands fabricated by metalorganic chemical vapor deposition , 2005 .

[84]  Kenji Uchino,et al.  Dependence of the Crystal Structure on Particle Size in Barium Titanate , 1989 .

[85]  Ute Rabe,et al.  Nanomechanical surface characterization by atomic force acoustic microscopy , 1997 .

[86]  A. Safari,et al.  Size Effects in Ferroelectric Ceramics , 1999 .

[87]  W. Känzig Space Charge Layer Near the Surface of a Ferroelectric , 1955 .

[88]  R. Waser,et al.  Ultrathin epitaxial ferroelectric films grown on compressive substrates: Competition between the surface and strain effects , 2001, cond-mat/0111218.

[89]  K. Rabe,et al.  Physics of thin-film ferroelectric oxides , 2005, cond-mat/0503372.

[90]  G. Suchaneck,et al.  Domain populations in lead zirconate titanate thin films of different compositions via piezoresponse force microscopy , 2005 .

[91]  Y. Eugene Pak,et al.  Principle of ferroelectric domain imaging using atomic force microscope , 2001 .

[92]  J. Son,et al.  Kelvin probe force microscopy study of SrBi2Ta2O9 and PbZr0.53Ti0.47O3 thin films for high-density nonvolatile storage devices , 2003 .

[93]  Hongkun Park,et al.  Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. , 2002, Journal of the American Chemical Society.

[94]  E. R. Fisher,et al.  Examination of Size-Induced Ferroelectric Phase Transitions in Template Synthesized PbTiO3 Nanotubes and Nanofibers , 2005 .

[95]  Hemantha K. Wickramasinghe,et al.  Atomic force microscope–force mapping and profiling on a sub 100‐Å scale , 1987 .

[96]  C. Kang,et al.  Patterning of ferroelectric nanodot arrays using a silicon nitride shadow mask , 2005 .

[97]  E. Meyer,et al.  Surface morphology, chemical contrast, and ferroelectric domains in TGS bulk single crystals differentiated with UHV non-contact force microscopy , 1999 .

[98]  I. P. Batra,et al.  Depolarization-Field-Induced Instability in Thin Ferroelectric Films-Experiment and Theory , 1973 .

[99]  Kenji Kitamura,et al.  Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope , 2002 .

[100]  Kurt Binder,et al.  Surface effects on phase transitions in ferroelectrics and dipolar magnets , 1979 .

[101]  I. P. Batra,et al.  Depolarization effects in thin ferroelectric films , 1976 .

[102]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[103]  G. Suchaneck,et al.  Scanning force microscopy investigation of the Pb(Zr0.25Ti0.75)O3/Pt interface , 2002 .

[104]  A. Gruverman Scaling effect on statistical behavior of switching parameters of ferroelectric capacitors , 1999 .

[105]  A. Tagantsev,et al.  Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors , 2003 .

[106]  Hongkun Park,et al.  Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy , 2002 .

[107]  Sergei V. Kalinin,et al.  Nanoelectromechanics of piezoresponse force microscopy , 2004, cond-mat/0408223.

[108]  Shuren Zhang,et al.  Domain evolution in ferroelectric thin films during fatigue process , 2005 .

[109]  Shih,et al.  Size dependence of the ferroelectric transition of small BaTiO3 particles: Effect of depolarization. , 1994, Physical review. B, Condensed matter.

[110]  Yasuo Cho,et al.  Observation of Ferroelectric Polarization in the Noncontact Mode of a Scanning Nonlinear Dielectric Microscope. , 1997 .

[111]  Yasuo Cho,et al.  Higher-order nonlinear dielectric microscopy , 2001 .

[112]  Rainer Waser,et al.  Imaging three-dimensional polarization in epitaxial polydomain ferroelectric thin films , 2002 .

[113]  Shigeki Saito,et al.  Significant stiffness reduction at ferroelectric domain boundary evaluated by ultrasonic atomic force microscopy , 2005 .

[114]  G. L. Pearson,et al.  Powder-pattern techniques for delineating ferroelectric domain structures , 1959 .

[115]  Y. Park,et al.  Critical thickness of ultrathin ferroelectric BaTiO3 films , 2005 .

[116]  A. Stanishevsky,et al.  Ferroelectric nanostructures via a modified focused ion beam technique , 2006 .

[117]  Calvin F. Quate,et al.  Charge storage in a nitride‐oxide‐silicon medium by scanning capacitance microscopy , 1991 .

[118]  J. Dec,et al.  Ferroelectric domain structures of PbTiO3 studied by scanning force microscopy , 2000 .

[119]  P. Migliorato,et al.  Investigations into local piezoelectric properties by atomic force microscopy , 2000 .

[120]  Phenomenological description of domain recording in ferroelectric semiconductors by using atomic force microscopy , 2005 .

[121]  P. Günter,et al.  Higher order ferroic switching induced by scanning force microscopy. , 2001, Physical review letters.

[122]  Jung-Pyo Hong,et al.  SURFACE CHARGE DENSITY AND EVOLUTION OF DOMAIN STRUCTURE IN TRIGLYCINE SULFATE DETERMINED BY ELECTROSTATIC-FORCE MICROSCOPY , 1998 .

[123]  J. E. Stern,et al.  Deposition and imaging of localized charge on insulator surfaces using a force microscope , 1988 .

[124]  A. Tagantsev,et al.  Fatigue of piezoelectric properties in Pb(Zr,Ti)O3 films , 1996 .

[125]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[126]  Orlando Auciello,et al.  Nanoscale imaging of domain dynamics and retention in ferroelectric thin films , 1997 .

[127]  B. Kang,et al.  Retention properties of fully integrated (Bi,La)4Ti3O12 capacitors and their lateral size effects , 2005 .

[128]  J. Melngailis,et al.  Scaling of ferroelectric properties in thin films , 1999 .

[129]  Y. Rosenwaks,et al.  Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy , 2003 .

[130]  Thomas Tybell,et al.  Ferroelectricity in thin perovskite films , 1999 .

[131]  Carlos Zaldo,et al.  Nonlinear local piezoelectric deformation in ferroelectric thin films studied by scanning force microscopy , 2005 .

[132]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[133]  Sergei V. Kalinin,et al.  Nanoelectromechanics of polarization switching in piezoresponse force microscopy , 2004, cond-mat/0406383.

[134]  Steve Dunn,et al.  Atomic Polarization and Local Reactivity on Ferroelectric Surfaces: A New Route toward Complex Nanostructures , 2002 .

[135]  Y. Kawazoe,et al.  Origin of anomalous lattice expansion in oxide nanoparticles , 2000, Physical review letters.

[136]  A. Kingon,et al.  Spatial inhomogeneity of imprint and switching behavior in ferroelectric capacitors , 2003 .

[137]  Susan Trolier-McKinstry,et al.  The Properties of Ferroelectric Films at Small Dimensions , 2000 .

[138]  Sergei V. Kalinin,et al.  Ferroelectric Lithography of Multicomponent Nanostructures , 2004 .

[139]  Yasuo Cho,et al.  Realization of 10Tbit∕in.2 memory density and subnanosecond domain switching time in ferroelectric data storage , 2005 .

[140]  Kenji Kitamura,et al.  Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy , 2002 .

[141]  W. Jo,et al.  Reverse-poling effects on charge retention in Pb(Zr,Ti)O3(001)/LaNiO3(001) heterostructures , 2000 .

[142]  L. Landau,et al.  On the theory of superconductivity , 1955 .

[143]  L. Blinov,et al.  Switching of a ferroelectric polymer Langmuir–Blodgett film studied by electrostatic force microscopy , 2001 .

[144]  A. Kholkin,et al.  Effect of external stress on ferroelectricity in epitaxial thin films , 2002 .

[145]  F. Morrison,et al.  LETTER TO THE EDITOR: High aspect ratio piezoelectric strontium bismuth tantalate nanotubes , 2003 .

[146]  Bratkovsky,et al.  Abrupt appearance of the domain pattern and fatigue of thin ferroelectric films , 2000, Physical review letters.

[147]  M. Alexe,et al.  Self-patterning nano-electrodes on ferroelectric thin films for gigabit memory applications , 1998 .

[148]  K. Yamanaka,et al.  Evaluation of Domain Boundary of Piezo/Ferroelectric Material by Ultrasonic Atomic Force Microscopy , 2004 .

[149]  W. Häberle,et al.  Ultrahigh density, high-data-rate NEMS-based AFM data storage system , 1999 .

[150]  Genaro Zavala,et al.  Characterization of ferroelectric lead zirconate titanate films by scanning force microscopy , 1997 .

[151]  Nava Setter,et al.  Interferometric measurements of electric field-induced displacements in piezoelectric thin films , 1996 .

[152]  Q. Yin,et al.  NANOSCALE PIEZOELECTRIC AND ELASTIC PHENOMENA OF FERROELECTRIC DOMAIN , 2005 .

[153]  E. R. Fisher,et al.  Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes , 2002 .

[154]  J F Scott,et al.  Self-patterning of arrays of ferroelectric capacitors: description by theory of substrate mediated strain interactions , 2003 .

[155]  H. Kumar Wickramasinghe,et al.  High‐resolution capacitance measurement and potentiometry by force microscopy , 1988 .

[156]  Stephen Jesse,et al.  Switching spectroscopy piezoresponse force microscopy of ferroelectric materials , 2006 .

[157]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .