Central Nervous Physiology of the Lateral Line, with Special Reference to Cartilaginous Fishes

Fishes and aquatic amphibians use the mechanoreceptive lateral line to detect weak water currents (Dijkgraaf 1963; Bleckmann 1986; Kalmijn 1988) and water surface waves (Schwartz 1971; Bleckmann 1988). Electrophysiological studies have shown that the pattern of impulses carried by primary lateral line afferents encodes information about the nature of the peripheral stimulus with respect to duration, amplitude, frequency, and phase (see Munz Chapter 14). If the activity of several neuromasts, which may differ with respect to the alignment of their most sensitive axis, is integrated over time and space, the additional information of stimulus direction and, perhaps, stimulus distance may be obtained. Thus the peripheral lateral line provides the brain with all cues necessary to evaluate a complex wave stimulus with respect to stimulus origin, stimulus duration, and stimulus type.

[1]  E. Vandenbussche,et al.  Convergence of retinal and lateral line stimulation on tectum opticum and cerebellar neurones. , 1967, Archives internationales de physiologie et de biochimie.

[2]  Bullock Th Processing of ampullary input in the brain: comparison of sensitivity and evoked responses among elasmobranch and siluriform fishes. , 1979 .

[3]  K. Nier Cutaneous sensitivity to touch and low-frequency vibration in selachians , 2004, Journal of comparative physiology.

[4]  H. Bleckmann,et al.  Role of lateral line in fish behaviour , 1986 .

[5]  P. Luiten Two visual pathways to the telencephalon in the nurse shark (Ginglymostoma cirratum). II. Ascending thalamo‐telencephalic connections , 1981, The Journal of comparative neurology.

[6]  R. Northcutt,et al.  Primary projections of the lateral line nerves in adult lampreys. , 1987, Brain, behavior and evolution.

[7]  Richard R. Fay,et al.  Hearing and Sound Communication in Fishes , 1981, Proceedings in Life Sciences.

[8]  E Fiebig,et al.  Connections of the corpus cerebelli in the thornback guitarfish, Platyrhinoidis triseriata (Elasmobranchii): A study with WGA‐HRP and extracellular granule cell recording , 1988, The Journal of comparative neurology.

[9]  D. H. Paul,et al.  Studies on a primitive cerebellar cortex - II. The projection of the posterior lateral-line nerve to the lateral-line lobes of the dogfish brain , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  I. Russell Central inhibition of lateral line input in the medulla of the goldfish by neurones which control active body movements , 2004, Journal of comparative physiology.

[11]  Kåre Bäckström CONTRIBUTIONS TO THE FOREBRAIN MORPHOLOGY IN SELACHIANS , 1924 .

[12]  T. Bullock,et al.  Sensory representation in the cerebellum of the catfish , 1984, Neuroscience.

[13]  Horst Bleckmann,et al.  Prey Identification and Prey Localization in Surface-feeding Fish and Fishing Spiders , 1988 .

[14]  John C. Montgomery,et al.  Noise cancellation in the electrosensory system of the thornback ray; common mode rejection of input produced by the animal's own ventilatory movement , 2004, Journal of Comparative Physiology A.

[15]  David Bodznick,et al.  Segregation of electroreceptive and mechanoreceptive lateral line afferents in the hindbrain of chondrostean fishes , 1985, Brain Research.

[16]  C. Bell,et al.  Termination of electroreceptor and mechanical lateral line afferents in the mormyrid acousticolateral area , 1978, The Journal of comparative neurology.

[17]  Perry W. Gilbert,et al.  Sharks and survival , 1966 .

[18]  C. Bell Central distribution of octavolateral afferents and efferents in a teleost (mormyridae) , 1981, The Journal of comparative neurology.

[19]  R. Northcutt,et al.  Audition and the Central Nervous System of Fishes , 1981 .

[20]  P. Luiten Two visual pathways to the telencephalon in the nurse shark (Ginglymostoma cirratum). I. Retinal projections , 1981, The Journal of comparative neurology.

[21]  C. A. Mccormick Comparative Neuroanatomy of the Octavolateralis Area of Fishes , 1981 .

[22]  Ad. J. Kalmijn,et al.  Hydrodynamic and Acoustic Field Detection , 1988 .

[23]  S. Tong The nucleus praeeminentialis: An electro- and mechanoreceptive center in the brainstem of the catfish , 1982, Journal of comparative physiology.

[24]  T. Bullock,et al.  Acoustic evoked activity in the brain in sharks , 1979, Journal of Comparative Physiology.

[25]  D. Cohen,et al.  Electrophysiological Identification of a Visual Area in Shark Telencephalon , 1973, Science.

[26]  T. Bullock,et al.  The Sensory Functions of the Cerebellum of the Thornback Ray, Platyrhinoidis triseriata , 1982 .

[27]  H. Hoagland ELECTRICAL RESPONSES FROM THE LATERAL-LINE NERVES OF CATFISH. I , 1933, The Journal of general physiology.

[28]  B. Claas,et al.  Projection of lateral line afferents in a teleost's brain , 1981, Neuroscience Letters.

[29]  E. Knudsen Distinct auditory and lateral line nuclei in the midbrain of catfishes , 1977, The Journal of comparative neurology.

[30]  J. Schweitzer Functional organization of the electroreceptive midbrain in an elasmobranch (Platyrhinoidis triseriata) , 2004, Journal of Comparative Physiology A.

[31]  T. Finger,et al.  Central organization of eighth nerve and mechanosensory lateral line systems in the brainstem of ictalurid catfish , 1984, The Journal of comparative neurology.

[32]  N. Schellart Acousticolateral and visual processing and their interaction in the torus semicircularis of the trout, Salmo gairdneri , 1983, Neuroscience Letters.

[33]  Catherine A. McCormick,et al.  Central Connections of the Octavolateralis System: Evolutionary Considerations , 1988 .

[34]  J. Meek,et al.  Functional anatomy of the tectum mesencephali of the goldfish. An explorative analysis of the functional implications of the laminar structural organization of the tectum , 1983, Brain Research Reviews.

[35]  M H Ellisman,et al.  Synaptic morphology and differences in sensitivity. , 1985, Science.

[36]  Anthony D. Hawkins,et al.  The Hearing Abilities of Fish , 1981 .

[37]  R. Northcutt,et al.  Central projections of the lateral line nerves in the shovelnose sturgeon , 1984, The Journal of comparative neurology.

[38]  T. Bullock,et al.  Thalamic center for the lateral line system in the catfish Ictalurus nebulosus: evoked potential evidence. , 1982, Journal of neurobiology.

[39]  I. Russell Central and peripheral inhibition of lateral line input during the startle response in goldfish. , 1974, Brain research.

[40]  Egil Alnæs Lateral line input to the crista cerebellaris in the eel. Field potentials and histology. , 1973 .

[41]  I. Russell,et al.  Inhibition of Spontaneous Lateral-Line Activity by Efferent Nerve Stimulation , 1972 .

[42]  R. Northcutt,et al.  An electrosensory area in the telencephalon of the little skate, Raja erinacea , 1984, Brain Research.

[43]  David Bodznick,et al.  Segregation of electro- and mechanoreceptive inputs to the elasmobranch medulla , 1980, Brain Research.

[44]  C. Kappers,et al.  The comparative anatomy of the nervous system of vertebrates, including man , 1936 .

[45]  T. Finger Nonolfactory sensory pathway to the telencephalon in a teleost fish. , 1980, Science.

[46]  Jelle Atema,et al.  Sensory Biology of Aquatic Animals , 1988, Springer New York.

[47]  S. Dijkgraaf THE FUNCTIONING and SIGNIFICANCE OF THE LATERAL‐LINE ORGANS , 1963, Biological reviews of the Cambridge Philosophical Society.

[48]  Egil Alnæs Unit Activity of Ganglionic and Medullary Second Order Neurones in the Eel Lateral Line System , 1973 .

[49]  R. L. Boord,et al.  Ascending lateral line pathways to the midbrain of the clearnose skate, Raja eglanteria , 1982, The Journal of comparative neurology.

[50]  R. Northcutt,et al.  Auditory centers in the elasmobranch brain stem: Deoxyglucose autoradiography and evoked potential recording , 1982, Brain Research.