[Cu6(NGuaS)6]2+ and its oxidized and reduced derivatives: Confining electrons on a torus

The hexanuclear thioguanidine mixed‐valent copper complex cation [Cu6(NGuaS)6]+2 (NGuaS = o‐SC6H4NC(NMe2)2) and its oxidized/reduced states are theoretically analyzed by means of density functional theory (DFT) (TPSSh + D3BJ/def2‐TZV (p)). A detailed bonding analysis using overlap populations is performed. We find that a delocalized Cu‐based ring orbital serves as an acceptor for donated S p electrons. The formed fully delocalized orbitals give rise to a confined electron cloud within the Cu6S6 cage which becomes larger on reduction. The resulting strong electrostatic repulsion might prevent the fully reduced state. Experimental UV/Vis spectra are explained using time‐dependent density functional theory (TD‐DFT) and analyzed with a natural transition orbital analysis. The spectra are dominated by MLCTs within the Cu6S6 core over a wide range but LMCTs are also found. The experimental redshift of the reduced low energy absorption band can be explained by the clustering of the frontier orbitals. © 2017 Wiley Periodicals, Inc.

[1]  J. Tomasi,et al.  Ab initio study of solvated molecules: A new implementation of the polarizable continuum model , 1996 .

[2]  Edward I. Solomon,et al.  Spectroscopic and Electronic Structural Studies of Blue Copper Model Complexes. 1. Perturbation of the Thiolate−Cu Bond , 2000 .

[3]  Edward I. Solomon,et al.  Ligand K-edge x-ray absorption spectroscopy: Covalency of ligand-metal bonds , 2005 .

[4]  Adam J. Bridgeman,et al.  The Mayer bond order as a tool in inorganic chemistry , 2001 .

[5]  Hans‐Jörg Himmel,et al.  One‐ versus Two‐Electron Oxidation of Complexed Guanidino‐Functionalized Aromatic Compounds , 2014 .

[6]  Sonja Herres-Pawlis,et al.  Copper(I) Thiolate Heteroadamantane Cage Structures with Relevance to Metalloproteins , 2016 .

[7]  Jun Wang,et al.  Three novel Cu6S6 cluster-based coordination compounds: synthesis, framework modulation and the sensing of small molecules and Fe(3+) ions. , 2016, Dalton transactions.

[8]  Frank Neese,et al.  A fully delocalized mixed-valence bis-μ(thiolato) dicopper complex: a structural and functional model of the biological CuA center. , 2011, Angewandte Chemie.

[9]  Pere Alemany,et al.  Bonding and structure in L4M2(.mu.-XRn)2 diamonds of tetrahedral d10 ions. Effect of substituents on the M- -M interaction , 1992 .

[10]  Evert Jan Baerends,et al.  Electronic structure, magnetic properties, ESR, and optical spectra for 2-iron ferredoxin models by LCAO-X.alpha. valence bond theory , 1984 .

[11]  M. E. Casida Time-Dependent Density Functional Response Theory for Molecules , 1995 .

[12]  J Chan,et al.  Studies of metal binding reactions in metallothioneins by spectroscopic, molecular biology, and molecular modeling techniques , 2002 .

[13]  Hans-Jörg Himmel,et al.  Counter-ligand control of the electronic structure in dinuclear copper-tetrakisguanidine complexes. , 2015, Dalton transactions.

[14]  Edward I. Solomon,et al.  Recent advances in understanding blue copper proteins , 2011 .

[15]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[16]  Roberto Cammi,et al.  Mononuclear and polynuclear copper(I) complexes with a new N,N',S-donor ligand and with structural analogies to the copper thionein core. , 2007, Inorganic chemistry.

[17]  Edward I. Solomon,et al.  Electronic structure and bonding of the blue copper site in plastocyanin , 1985 .

[18]  R. Ahlrichs,et al.  STABILITY ANALYSIS FOR SOLUTIONS OF THE CLOSED SHELL KOHN-SHAM EQUATION , 1996 .

[19]  Ulrich Flörke,et al.  The trinuclear copper(I) thiolate complexes [Cu3(NGuaS)3](0/1+) and their dimeric variants [Cu6(NGuaS)6](1+/2+/3+) with biomimetic redox properties. , 2011, Angewandte Chemie.

[20]  Sonja Herres-Pawlis,et al.  Optical response of the Cu2S2 diamond core in Cu2II (NGuaS)2Cl2 , 2016, J. Comput. Chem..

[21]  V. Adam,et al.  The Role of Metallothionein in Oxidative Stress , 2013, International journal of molecular sciences.

[22]  Louis Noodleman,et al.  Valence bond description of antiferromagnetic coupling in transition metal dimers , 1981 .

[23]  Peter Day,et al.  Mixed Valence Chemistry-A Survey and Classification , 1968 .

[24]  Jianmin Tao,et al.  Erratum: “Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes” [J. Chem. Phys. 119, 12129 (2003)] , 2004 .

[25]  M. G. Medvedev,et al.  Density functional theory is straying from the path toward the exact functional , 2017, Science.

[26]  Giovanni Scalmani,et al.  New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution , 2002 .

[27]  Imre G. Csizmadia,et al.  Computational advances in organic chemistry : molecular structure and reactivity , 1991 .

[28]  Yi Lu,et al.  Binuclear Cu(A) Formation in Biosynthetic Models of Cu(A) in Azurin Proceeds via a Novel Cu(Cys)2His Mononuclear Copper Intermediate. , 2015, Biochemistry.

[29]  Sunney I. Chan,et al.  The nature of CuA in cytochrome c oxidase , 1982, FEBS letters.

[30]  David A. Case,et al.  Density-Functional Theory of Spin Polarization and Spin Coupling in Iron—Sulfur Clusters , 1992 .

[31]  H. Schlegel,et al.  Do You Have SCF Stability and Convergence Problems , 1991 .

[32]  M Wilmanns,et al.  Crystal structure of the membrane-exposed domain from a respiratory quinol oxidase complex with an engineered dinuclear copper center. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Mary E. Barr,et al.  X-ray Absorption Studies on the Mixed-Valence and Fully Reduced Forms of the Soluble CuA Domains of Cytochrome c Oxidase , 1997 .

[34]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[35]  Robert K Szilagyi,et al.  Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. , 2004, Chemical reviews.

[36]  Pere Alemany,et al.  To Bend or Not To Bend: Dilemma of the Edge-Sharing Binuclear Square Planar Complexes of d8 Transition Metal Ions , 1998 .

[37]  T. Tomizaki,et al.  Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A , 1995, Science.

[38]  G. Scuseria,et al.  Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes , 2003 .

[39]  Hans‐Jörg Himmel,et al.  Thermochromism of Cu(I) Tetrakisguanidine Complexes: Reversible Activation of Metal-to-Ligand Charge-Transfer Bands. , 2015, Chemistry.

[40]  Louis Noodleman,et al.  The Xα valence bond theory of weak electronic coupling. Application to the low‐lying states of Mo2Cl84− , 1979 .

[41]  Gerald Henkel,et al.  The Active Sites of the Native Cytochrome‐c Oxidase from Bovine Heart Mitochondria: EXAFS‐Spectroscopic Characterization of a Novel Homobinuclear Copper Center (CuA) and of the Heterobinuclear Fea3‐CuB Center , 1995 .

[42]  Abhishek Dey,et al.  Mixed valent sites in biological electron transfer. , 2008, Chemical Society reviews.

[43]  Li Tian,et al.  Copper active sites in biology. , 2014, Chemical reviews.

[44]  Yi Lu,et al.  Spectroscopy of Mixed-Valence CuA-Type Centers: Ligand-Field Control of Ground-State Properties Related to Electron Transfer , 1998 .

[45]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[46]  Ulrich Weser,et al.  The crystal structure of yeast copper thionein: the solution of a long-lasting enigma. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[48]  S. Antonyuk,et al.  Insight into catalysis of nitrous oxide reductase from high-resolution structures of resting and inhibitor-bound enzyme from Achromobacter cycloclastes. , 2006, Journal of molecular biology.

[49]  K. Hodgson,et al.  A quantitative description of the ground-state wave function of Cu(A) by X-ray absorption spectroscopy: comparison to plastocyanin and relevance to electron transfer. , 2001, Journal of the American Chemical Society.

[50]  Ulrich Flörke,et al.  A halide-induced copper(I) disulfide/copper(II) thiolate interconversion. , 2012, Angewandte Chemie.

[51]  Gerald Henkel,et al.  Metallothioneins: zinc, cadmium, mercury, and copper thiolates and selenolates mimicking protein active site features--structural aspects and biological implications. , 2004, Chemical reviews.

[52]  Ulrich Flörke,et al.  Die dreikernigen Kupfer(I)‐Thiolat‐Komplexe [Cu3(NGuaS)3]0/1+ und ihre dimeren Varianten [Cu6(NGuaS)6]1+/2+/3+ mit biomimetischen Redoxeigenschaften , 2011 .

[53]  Roald Hoffmann,et al.  S4(2-) rings, disulfides, and sulfides in transition-metal complexes: the subtle interplay of oxidation and structure. , 2008, Angewandte Chemie.

[54]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[55]  M. Witte,et al.  Density functional theory of the CuA‐like Cu2S2 diamond core in Cu 2II (NGuaS)2Cl2 , 2016, J. Comput. Chem..

[56]  Alexander Hoffmann,et al.  (Guanidine)copper complexes: structural variety and application in bioinorganic chemistry and catalysis , 2011 .

[57]  M Vasák,et al.  Metallothioneins: new functional and structural insights. , 2000, Current opinion in chemical biology.

[58]  Günter Häfelinger,et al.  Refined ab initio 6‐31G split‐valence basis set optimization of the molecular structures of biphenyl in twisted, planar, and perpendicular conformations , 1987 .

[59]  Edward I. Solomon,et al.  X-ray absorption spectroscopic studies of the blue copper site: Metal and ligand K-edge studies to probe the origin of the EPR hyperfine splitting in plastocyanin , 1993 .

[60]  Abhishek Dey,et al.  Metal–thiolate bonds in bioinorganic chemistry , 2006, J. Comput. Chem..

[61]  Santiago Alvarez,et al.  A New Class of (μ-η2:η2-Disulfido)dicopper Complexes: Synthesis, Characterization, and Disulfido Exchange , 2004 .

[62]  Serge I. Gorelsky,et al.  Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods , 2001 .

[63]  Richard L. Martin NATURAL TRANSITION ORBITALS , 2003 .

[64]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[65]  S. Alvarez,et al.  Through-ring bonding in edge sharing dimers of octahedral complexes. , 2000, Inorganic chemistry.

[66]  E. Margoliash,et al.  Copper electron-nuclear double resonance of cytochrome c oxidase. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Chiara Botta,et al.  Cu(I) hybrid inorganic-organic materials with intriguing stimuli responsive and optoelectronic properties , 2016 .

[68]  Matthias Tamm,et al.  Synthesis and reactivity of copper(I) complexes with an ethylene-bridged bis(imidazolin-2-imine) ligand. , 2008, Dalton transactions.

[69]  Siegfried Schneider,et al.  Combined spectroscopic and theoretical evidence for a persistent end-on copper superoxo complex. , 2004, Angewandte Chemie.

[70]  Hartmut Michel,et al.  Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans , 1995, Nature.

[71]  Mark E. Casida,et al.  Time-dependent density-functional theory for molecules and molecular solids , 2009 .