A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-winner election method

In recent years, the Pirate Party of Sweden, the Wikimedia Foundation, the Debian project, the “Software in the Public Interest” project, the Gentoo project, and many other private organizations adopted a new single-winner election method for internal elections and referendums. In this article, we will introduce this method, demonstrate that it satisfies, e.g., resolvability, Condorcet, Pareto, reversal symmetry, monotonicity, and independence of clones and present an O(C^3) algorithm to calculate the winner, where C is the number of alternatives.

[1]  Manfred J. Holler,et al.  Power, freedom, and voting , 2008 .

[2]  H. Moulin Condorcet's principle implies the no show paradox , 1988 .

[3]  Jobst Heitzig Social Choice Under Incomplete, Cyclic Preferences , 2002 .

[4]  D. Saari Geometry of voting , 1994 .

[5]  Jonathan Lawry,et al.  Symbolic and Quantitative Approaches to Reasoning with Uncertainty , 2009 .

[6]  Anja Gruenheid,et al.  Crowdsourcing Entity Resolution: When is A=B? , 2012 .

[7]  Douglas R. Woodall,et al.  Monotonicity of Single-seat Preferential Election Rules , 1997, Discret. Appl. Math..

[8]  Barry Nalebuff,et al.  An Introduction to Vote-Counting Schemes , 1995 .

[9]  Allen Van Gelder Careful Ranking of Multiple Solvers with Timeouts and Ties , 2011, SAT.

[10]  Shrikanth S. Narayanan,et al.  Emotion classification from speech using evaluator reliability-weighted combination of ranked lists , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[11]  Gert Köhler,et al.  Choix multicritère et analyse algébrique de données ordinales , 1978 .

[12]  Rosa Camps,et al.  A general method for deciding about logically constrained issues , 2010, Annals of Mathematics and Artificial Intelligence.

[13]  K. Arrow,et al.  Social Choice and Multicriterion Decision-Making , 1986 .

[14]  Hannu Nurmi,et al.  Closeness Counts in Social Choice , 2008 .

[15]  Rosa Camps,et al.  A continuous rating method for preferential voting: the complete case , 2009, Soc. Choice Welf..

[16]  Rosa Camps,et al.  Social choice rules driven by propositional logic , 2011, Annals of Mathematics and Artificial Intelligence.

[17]  J. H. Smith AGGREGATION OF PREFERENCES WITH VARIABLE ELECTORATE , 1973 .

[18]  Gregory M. P. O'Hare,et al.  Social Choice in Sensor Networks , 2012 .

[19]  Zbigniew Kotulski,et al.  Notary-based self-healing mechanism for centralized peer-to-peer infrastructures , 2012 .

[20]  A. Uma Maheswari,et al.  A Fuzzy Mathematical Model for Multi Criteria Group Decision Making- An Application in Supply Chain Management , 2012 .

[21]  R. Rivest,et al.  An Optimal Single-Winner Preferential Voting System Based on Game Theory , 2010 .

[22]  J. Pérez The Strong No Show Paradoxes are a common flaw in Condorcet voting correspondences , 2001 .

[23]  T. Tideman,et al.  Independence of clones as a criterion for voting rules , 1987 .

[24]  Chris Callison-Burch,et al.  Fast, Cheap, and Creative: Evaluating Translation Quality Using Amazon’s Mechanical Turk , 2009, EMNLP.

[25]  David C. Parkes,et al.  A Complexity-of-Strategic-Behavior Comparison between Schulze's Rule and Ranked Pairs , 2012, AAAI.

[26]  F. Pukelsheim,et al.  Mathematics and democracy : recent advances in voting systems and collective choice , 2006 .

[27]  Nicolas de Condorcet Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .

[28]  Weiru Liu,et al.  Approaches to Constructing a Stratified Merged Knowledge Base , 2007, ECSQARU.

[29]  Ariel D. Procaccia,et al.  When do noisy votes reveal the truth? , 2013, EC '13.

[30]  Andrew Caplin,et al.  ON 64%-MAJORITY RULE , 1988 .

[31]  Ronaldo C. Prati,et al.  Combining feature ranking algorithms through rank aggregation , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).

[32]  Barry Wright Objective Measures of Preferential Ballot Voting Systems , 2009 .

[33]  Rosa Camps,et al.  A continuous rating method for preferential voting. The incomplete case , 2012, Soc. Choice Welf..

[34]  T. Tideman,et al.  Collective Decisions and Voting: The Potential for Public Choice , 2006 .

[35]  P. Fishburn Condorcet Social Choice Functions , 1977 .

[36]  Christoph Börgers,et al.  Mathematics of Social Choice - Voting, Compensation, and Division , 2010 .

[37]  Joan Feigenbaum,et al.  Economics and Computation , 2008 .

[38]  A. Negriu,et al.  On the performance of voting systems in spatial voting simulations , 2012 .

[39]  William Poundstone,et al.  Gaming the Vote: Why Elections Aren't Fair (and What We Can Do About It) , 2008 .

[40]  Fernando Diaz,et al.  A Methodology for Evaluating Aggregated Search Results , 2011, ECIR.

[41]  Joemon M. Jose,et al.  Which vertical search engines are relevant? , 2013, WWW '13.

[42]  H. Young Social Choice Scoring Functions , 1975 .

[43]  Fernando Diaz,et al.  Learning to aggregate vertical results into web search results , 2011, CIKM '11.

[44]  Rosa Camps,et al.  A continuous rating method for preferential voting , 2008, 0810.2263.

[45]  Uwe M. Borghoff,et al.  Data Fusion: Boosting Performance in Keyword Extraction , 2013, 2013 20th IEEE International Conference and Workshops on Engineering of Computer Based Systems (ECBS).

[46]  Tommi Meskanen,et al.  Distance from Consensus: A Theme and Variations , 2006 .

[47]  Christoph Brgers Mathematics of Social Choice: Voting, Compensation, and Division , 2009 .

[48]  Zachary F. Lansdowne,et al.  Ordinal ranking methods for multicriterion decision making , 1996 .

[49]  H. Nurmi Comparing Voting Systems , 1987 .