Why is metabolic labour divided in nitrification?

[1]  M. Aleem Oxidation of Inorganic Nitrogen Compounds , 1970 .

[2]  R. Thauer,et al.  Energy conservation in chemotrophic anaerobic bacteria , 1977, Bacteriological reviews.

[3]  E Broda,et al.  Two kinds of lithotrophs missing in nature. , 1977, Zeitschrift fur allgemeine Mikrobiologie.

[4]  L. Belser Population ecology of nitrifying bacteria. , 1979, Annual review of microbiology.

[5]  S. Ferguson,et al.  Respiration-dependent proton translocation and the mechanism of protonmotive force generation in Nitrobacter winogradskyi , 1985 .

[6]  Anaerobic degradation of 3,4,5‐trimethoxybenzoate by a defined mixed culture of Acetobacterium woodii, Pelobacter acidigallici, and Desulfobacter postgatei , 1985 .

[7]  J. Adams,et al.  Evolution of Escherichia coli during growth in a constant environment. , 1987, Genetics.

[8]  J. Prosser Autotrophic nitrification in bacteria. , 1989, Advances in microbial physiology.

[9]  D. Button Biochemical Basis for Whole-Cell Uptake Kinetics: Specific Affinity, Oligotrophic Capacity, and the Meaning of the Michaelis Constant , 1991, Applied and environmental microbiology.

[10]  J. Swings The genera Acetobacter and Gluconobacter , 1992 .

[11]  H. Westerhoff,et al.  Protein burden in Zymomonas mobilis: negative flux and growth control due to overproduction of glycolytic enzymes , 1995 .

[12]  R. Heinrich,et al.  The Regulation of Cellular Systems , 1996, Springer US.

[13]  J E Bailey,et al.  Use of a glycerol-limited, long-term chemostat for isolation of Escherichia coli mutants with improved physiological properties. , 1997, Microbiology.

[14]  J. Kreft,et al.  Effects of alternative methyl group acceptors on the growth energetics of the O-demethylating anaerobe Holophaga foetida. , 1997, Microbiology.

[15]  M. Wagner,et al.  Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria , 1996, Applied and environmental microbiology.

[16]  K. Noto,et al.  Molecular Analysis of Bacterial Communities in a Three-Compartment Granular Activated Sludge System Indicates Community-Level Control by Incompatible Nitrification Processes , 1998, Applied and Environmental Microbiology.

[17]  K. Noto,et al.  Complete oxidation of high concentration of ammonia by retaining incompatible nitrification activities in three-vessel system , 1998 .

[18]  L. Bakken,et al.  An evaluated improvement of the extinction dilution method for isolation of ammonia-oxidizing bacteria. , 1999, Journal of microbiological methods.

[19]  T. D. Brock Milestones in microbiology 1546 to 1940 , 1999 .

[20]  J. G. Kuenen,et al.  Missing lithotroph identified as new planctomycete , 1999, Nature.

[21]  S. Okabe,et al.  In Situ Analysis of Nitrifying Biofilms as Determined by In Situ Hybridization and the Use of Microelectrodes , 1999, Applied and Environmental Microbiology.

[22]  A. Hooper,et al.  Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. , 2000, Biochimica et biophysica acta.

[23]  J. Murrell,et al.  Fluorescent oligonucleotide rDNA probes for specific detection of methane oxidising bacteria. , 2000, FEMS microbiology ecology.

[24]  G. Kowalchuk,et al.  Ammonia-oxidizing bacteria: a model for molecular microbial ecology. , 2001, Annual review of microbiology.

[25]  A. Bollmann,et al.  Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations , 2001 .

[26]  J. Wesselink,et al.  Obligate Sulfide-Dependent Degradation of Methoxylated Aromatic Compounds and Formation of Methanethiol and Dimethyl Sulfide by a Freshwater Sediment Isolate,Parasporobacterium paucivorans gen. nov., sp. nov , 2001, Applied and Environmental Microbiology.

[27]  M. Jetten,et al.  Ammonia oxidation by Nitrosomonas eutropha with NO(2) as oxidant is not inhibited by acetylene. , 2001, Microbiology.

[28]  H. Koops,et al.  Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species , 2001 .

[29]  S. Bonhoeffer,et al.  Cooperation and Competition in the Evolution of ATP-Producing Pathways , 2001, Science.

[30]  L. Sayavedra-Soto,et al.  Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea , 2002, Archives of Microbiology.

[31]  Julia A. Vorholt,et al.  Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria , 2002, Archives of Microbiology.

[32]  S. Bonhoeffer,et al.  Evolutionary Consequences of Tradeoffs between Yield and Rate of ATP Production , 2002 .

[33]  S. Bonhoeffer,et al.  An evolutionary scenario for the transition to undifferentiated multicellularity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  A. Schramm In Situ Analysis of Structure and Activity of the Nitrifying Community in Biofilms, Aggregates, and Sediments , 2003 .

[35]  Michael Wagner,et al.  16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. , 2003, International journal of systematic and evolutionary microbiology.

[36]  J. Kreft,et al.  Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds , 2004, Archives of Microbiology.

[37]  J. Kreft,et al.  Demethylation and degradation of phenylmethylethers by the sulfide-methylating homoacetogenic bacterium strain TMBS 4 , 1993, Archives of Microbiology.

[38]  K. Arrigo Marine microorganisms and global nutrient cycles , 2005, Nature.

[39]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[40]  J. Kreft,et al.  Biofilms promote altruism. , 2004, Microbiology.

[41]  S. Bonhoeffer,et al.  Evolution of Cross‐Feeding in Microbial Populations , 2004, The American Naturalist.

[42]  Julian Adams Microbial evolution in laboratory environments. , 2004, Research in microbiology.

[43]  M. Strous,et al.  Anaerobic oxidation of methane and ammonium. , 2004, Annual review of microbiology.

[44]  K. Finster,et al.  Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria , 1992, Archives of Microbiology.

[45]  B. Schink,et al.  Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium , 1982, Archives of Microbiology.

[46]  M. Könneke,et al.  Isolation of an autotrophic ammonia-oxidizing marine archaeon , 2005, Nature.

[47]  Hans-Peter Klenk,et al.  Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. , 2005, Environmental microbiology.

[48]  J. Beman,et al.  Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. Amann,et al.  Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Kreft,et al.  The evolution of groups of cooperating bacteria and the growth rate versus yield trade-off. , 2005, Microbiology.