Dense ceramic membranes for methane conversion

Dense ceramic membranes made from mixed oxygen-ionic and electronic conducting perovskite-related oxides allow separation of oxygen from an air supply at elevated temperatures (>700 °C). By combining air separation and catalytic partial oxidation of methane to syngas into a ceramic membrane reactor, this technology is expected to significantly reduce the capital costs of conversion of natural gas to liquid added-value products. The present survey is mainly concerned with the material properties that govern the performance of the mixed-conducting membranes in real operating conditions and highlights significant developments in the field.

[1]  H. Anderson Review of p-type doped perovskite materials for SOFC and other applications , 1992 .

[2]  T. Ishihara,et al.  Partial Oxidation of Methane into Syngas with Oxygen Permeating Ceramic Membrane Reactors , 2001 .

[3]  A. Manthiram,et al.  Sol–gel synthesis, phase relationships, and oxygen permeation properties of Sr4Fe6−xCoxO13+δ (0≤x≤3) , 2000 .

[4]  H. Verweij,et al.  Chemical diffusion and oxygen surface transfer of La1-xSrxCoO3-δ studied with electrical conductivity relaxation , 2002 .

[5]  Michael Schwartz,et al.  Catalytic membrane reactors for spontaneous synthesis gas production , 2000 .

[6]  P. Dyer,et al.  Ion transport membrane technology for oxygen separation and syngas production , 2000 .

[7]  P. S. Maiya,et al.  Ceramic membrane reactor for converting methane to syngas , 1997 .

[8]  Zongping Shao,et al.  Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion , 2001 .

[9]  B. Ma,et al.  Study of the mixed conducting SrFeCo0.5Oy ceramic membrane material by in-situ neutron powder diffraction , 2000 .

[10]  L. Gauckler,et al.  Stability of the perovskite phase LaBO3 (B = V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere I. Experimental results , 1979 .

[11]  H. Verweij,et al.  Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor , 1995 .

[12]  J. Mizusaki,et al.  Nonstoichiometry and defect structure of the perovskite-type oxides La1−xSrxFeO3−° , 1985 .

[13]  W. R. Moser,et al.  Oxidative coupling of methane using oxygen-permeable dense membrane reactors , 2000 .

[14]  R. Cai,et al.  Novel and Ideal Zirconium-Based Dense Membrane Reactors for Partial Oxidation of Methane to Syngas , 2002 .

[15]  B. Steele Oxygen ion conductors and their technological applications , 1992 .

[16]  Y. S. Lin,et al.  Tubular lanthanum cobaltite perovskite-type membrane reactors for partial oxidation of methane to syngas , 2000 .

[17]  Rune Bredesen,et al.  Crystal structure of the mixed conductor Sr4Fe4Co2O13 , 1997 .

[18]  W. Thomson,et al.  Perovskite-type oxide membranes for the oxidative coupling of methane , 1997 .

[19]  R. B. Poeppel,et al.  Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas , 1994 .

[20]  Yaping Lu,et al.  Oxygen-permeable dense membrane reactor for the oxidative coupling of methane. , 2000 .

[21]  Sangtae Kim,et al.  Determination of oxygen permeation kinetics in a ceramic membrane based on the composition SrFeCo0.5O3.25−δ , 1998 .

[22]  Y. S. Lin,et al.  Catalytic Properties of Oxygen Semipermeable Perovskite-Type Ceramic Membrane Materials for Oxidative Coupling of Methane , 1996 .

[23]  H. Verweij,et al.  Oxygen transport through La1-xSrxFeO3-(delta) membranes. I. Permeation in air/He gradients , 1995 .

[24]  W. Laqua,et al.  Crystalline Oxide Solid Solutions in Oxygen Potential Gradients , 1979 .

[25]  U. Balachandran,et al.  Methane to syngas via ceramic membranes , 1995 .

[26]  Roger B. Poeppel,et al.  Dense ceramic membranes for partial oxidation of methane to syngas , 1995 .

[27]  H. Schmalzried,et al.  Multicomponent oxides in oxygen potential gradients , 1981 .

[28]  N. Yamazoe,et al.  Mixed ionic-electronic conductivity of La1−xSrxCo1−yFeyO3−δ perovskite-type oxides , 1988 .

[29]  D. M. Smyth Defects and Order in Perovskite-Related Oxides , 1985 .

[30]  A. Stacy,et al.  Local structure and oxide-ion motion in defective perovskites , 1994 .

[31]  H. Bouwmeester,et al.  Ion and mixed conducting oxides as catalysts , 1992 .

[32]  K. Wiik,et al.  Prospects and problems of dense oxygen permeable membranes , 2000 .

[33]  W. R. Moser,et al.  Dense Perovskite, La1‐xA′xFe1‐yCoyO3‐δ (A′= Ba, Sr, Ca), Membrane Synthesis, Applications, and Characterization , 2005 .

[34]  J. E. Elshof,et al.  Activation of methane using solid oxide membranes , 1995 .

[35]  Dan Luss,et al.  Ceramic membrane reactor for synthesis gas production , 2001 .

[36]  Yuehe Lin,et al.  Oxidative Coupling of Methane on Oxygen-Semipermeable Yttria-Doped Bismuth Oxide Ceramics in a Reducing Atmosphere , 1997 .

[37]  Zongping Shao,et al.  Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas , 2001 .

[38]  A. Manthiram,et al.  Crystal chemical characterization of the mixed conductor Sr(Fe,Co){sub 1.5}O{sub y} exhibiting unusually high oxygen permeability , 1997 .

[39]  C. Tsai Dense perovskite membrane reactors for partial oxidation of methane to syngas , 1997 .