Nonparametric Identification of Generalized Hammerstein Models

Abstract The popular Hammerstein model consists of a static (zero-memory) non-linearity followed in series by a linear dynamic model. This paper considers an extension of this structure in which the static nonlinearity is replaced by a finite-memory nonlinearity. The result is a large class of fading memory models that includes many interesting special cases. We consider the nonparametric identification problem, building on previous results for nonparametric Hammerstein model identification, emphasizing interactions between (partial) model structure specifications, input sequence characteristics, and modeling error/distribution assumptions.

[1]  Ruey S. Tsay,et al.  Nonlinear Additive ARX Models , 1993 .

[2]  Bryon R. Maner,et al.  Polymerization reactor control using autoregressive‐plus Volterra‐based MPC , 1997 .

[3]  J S Outerbridge,et al.  A nonlinear model of semicircular canal primary afferents in bullfrog. , 1982, Journal of neurophysiology.

[4]  Herbert J. A. F. Tulleken,et al.  Grey-box modelling and identification using physical knowledge and bayesian techniques , 1993, Autom..

[5]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .

[6]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[7]  D. Brillinger The identification of a particular nonlinear time series system , 1977 .

[8]  F. J. Doyle,et al.  Plant-friendly identification of second-order Volterra models , 1999, 1999 European Control Conference (ECC).

[9]  Torbjörn Wigren,et al.  Recursive prediction error identification using the nonlinear wiener model , 1993, Autom..

[10]  P. Robinson,et al.  The estimation of a nonlinear moving average model , 1977 .

[11]  Wlodzimierz Greblicki,et al.  Nonparametric identification of Wiener systems , 1992, IEEE Trans. Inf. Theory.

[12]  W. Greblicki,et al.  Cascade non-linear system identification by a non-parametric method , 1994 .

[13]  Miroslaw Pawlak,et al.  Nonparametric identification of Hammerstein systems , 1989, IEEE Trans. Inf. Theory.

[14]  Torsten Söderström Feedforward, correlated disturbances and identification , 1999, Autom..

[15]  Zhu Xue-feng,et al.  Nonlinear Predictive Control Based on Hammerstein Models , 1994 .

[16]  A S French,et al.  The dynamic nonlinear behavior of fly photoreceptors evoked by a wide range of light intensities. , 1993, Biophysical journal.

[17]  Heinrich Rake,et al.  Control and Process Supervision of a Particle Filter System for Diesel Engines , 1993 .

[18]  M. Munih,et al.  Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle , 1998, IEEE Transactions on Biomedical Engineering.

[19]  Ronald K. Pearson,et al.  Nonlinear process identification , 1997 .

[20]  R. Pearson Nonlinear Input/Output Modeling , 1994 .