Mesh-free canonical tensor products for six-dimensional density matrix: computation of kinetic energy

The computation of a six-dimensional density matrix is the crucial step for the evaluation of kinetic energy in electronic structure calculations. For molecules with heavy nuclei, one has to consider a very refined mesh in order to deal with the nuclear cusps. This leads to high computational time and needs huge memory for the computation of the density matrix. To reduce the computational complexity and avoid discretization errors in the approximation, we use mesh-free canonical tensor products in electronic structure calculations. In this paper, we approximate the six-dimensional density matrix in an efficient way and then compute the kinetic energy. Accuracy is examined by comparing our computed kinetic energy with the exact computation of the kinetic energy.

[1]  Wolfgang Hackbusch,et al.  The tensor product approximation to single-electron systems , 2009 .

[2]  B. Esser Density Matrix Theory and Applications , 1998 .

[3]  P. Knowles,et al.  Poisson equation in the Kohn-Sham Coulomb problem. , 2001, Physical review letters.

[4]  Arash A. Mostofi,et al.  Accurate kinetic energy evaluation in electronic structure calculations with localized functions on real space grids , 2001, cond-mat/0111322.

[5]  Frederick R. Manby,et al.  Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals , 2003 .

[6]  S. Ten-no,et al.  Three-center expansion of electron repulsion integrals with linear combination of atomic electron distributions , 1995 .

[7]  André Uschmajew,et al.  Bridging the gap between quantum Monte Carlo and F12-methods , 2012 .

[8]  Boris N. Khoromskij,et al.  Mathematik in den Naturwissenschaften Leipzig Tensor-Product Approximation to Operators and Functions in High Dimensions , 2007 .

[9]  Dietrich Braess,et al.  Asymptotics for the approximation of wave functions by exponential sums , 1995 .

[10]  Wolfgang Hackbusch,et al.  A regularized Newton method for the efficient approximation of tensors represented in the canonical tensor format , 2012, Numerische Mathematik.

[11]  C. M. Reeves,et al.  Automatic Fundamental Calculations of Molecular Structure , 1956, Nature.

[12]  Wolfgang Hackbusch,et al.  Tensor product approximation with optimal rank in quantum chemistry. , 2007, The Journal of chemical physics.

[13]  Sullivan,et al.  Real-space multigrid-based approach to large-scale electronic structure calculations. , 1996, Physical review. B, Condensed matter.

[14]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[15]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[16]  In-Ho Lee,et al.  One-way multigrid method in electronic-structure calculations , 2000 .

[17]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[18]  Wolfgang Hackbusch,et al.  Efficient multi-scale computation of products of orbitals in electronic structure calculations , 2010, Comput. Vis. Sci..

[19]  David B Cook,et al.  Handbook of Computational Quantum Chemistry , 1998 .

[20]  Efthimios Kaxiras,et al.  Adaptive-coordinate real-space electronic-structure calculations for atoms, molecules, and solids , 1997 .

[21]  Florian Weigend,et al.  A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency , 2002 .

[22]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[23]  Boris N. Khoromskij,et al.  Hierarchical Kronecker tensor-product approximations , 2005, J. Num. Math..

[24]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part II. HKT Representation of Certain Operators , 2005, Computing.

[25]  B. Fornberg,et al.  A review of pseudospectral methods for solving partial differential equations , 1994, Acta Numerica.

[26]  Frederick R. Manby,et al.  The Poisson equation in density fitting for the Kohn-Sham Coulomb problem , 2001 .

[27]  Werner Kutzelnigg,et al.  Theory of the expansion of wave functions in a gaussian basis , 1994 .

[28]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[29]  Wolfgang Hackbusch,et al.  Canonical Tensor Products as a Generalization of Gaussian-type Orbitals , 2010 .

[30]  Frederick R. Manby,et al.  Fast Hartree–Fock theory using local density fitting approximations , 2004 .

[31]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[32]  Wu,et al.  Higher-order finite-difference pseudopotential method: An application to diatomic molecules. , 1994, Physical review. B, Condensed matter.

[33]  Q. Haider Numerical evaluation of the kinetic-energy operator , 1994 .

[34]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[35]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part I. Separable Approximation of Multi-variate Functions , 2005, Computing.