On Complete and Strong Controllability for Rectangular Descriptor Systems

Algebraic criteria have been developed to check the complete and strong controllability for rectangular descriptor systems. Under the assumption of controllability at infinity, the complete controllability for a descriptor system has been proved to be equivalent to the controllability for a normal system. The essence of the technique to design the proposed normal system is based on the row and column compression operations of basic matrix theory. The strong controllability concept for a descriptor system is related with the complete controllability concept for another descriptor system. Examples are provided to illustrate the theory.

[1]  Qingling Zhang,et al.  Complexity, Analysis and Control of Singular Biological Systems , 2012 .

[2]  Xian Zhang,et al.  Regulation of rectangular descriptor systems with constrained states and controls , 2010, 2010 Chinese Control and Decision Conference.

[3]  Stephan Trenn,et al.  Kalman controllability decompositions for differential-algebraic systems , 2014, Syst. Control. Lett..

[4]  João Yoshiyuki Ishihara,et al.  Impulse controllability and observability of rectangular descriptor systems , 2001, IEEE Trans. Autom. Control..

[5]  H. Rosenbrock Structural properties of linear dynamical systems , 1974 .

[6]  Frank L. Lewis,et al.  Kalman decomposition for implicit linear systems , 1992 .

[7]  D. Cobb Controllability, observability, and duality in singular systems , 1984 .

[8]  A. Banaszuk,et al.  On Hautus-type conditions for controllability of implicit linear discrete-time systems , 1989 .

[9]  G. Duan Analysis and Design of Descriptor Linear Systems , 2010 .

[10]  S. Small,et al.  Runge-Kutta type methods for differential-algebraic equations in mechanics , 2011 .

[11]  Mingqing Xiao,et al.  Admissible Control of Linear Singular Delta Operator Systems , 2014, Circuits Syst. Signal Process..

[12]  R. F. Sincovec,et al.  Solvability, controllability, and observability of continuous descriptor systems , 1981 .

[13]  N. E. Radhy,et al.  Regulation of linear continuous-time singular systems with constrained states and controls , 2007, Int. J. Syst. Sci..

[14]  T. Kailath,et al.  A generalized state-space for singular systems , 1981 .

[15]  S. Campbell Singular systems of differential equations II , 1980 .

[16]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[17]  K. Özçaldiran A geometric characterization of the reachable and the controllable subspaces of descriptor systems , 1986 .

[18]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[19]  Volker Mehrmann,et al.  Regularization of Descriptor Systems by Derivative and Proportional State Feedback , 1992, SIAM J. Matrix Anal. Appl..

[20]  L. Fletcher,et al.  An intermediate algorithm for pole placement by output feedback in descriptor systems , 1994 .

[21]  Robert J. Schilling,et al.  On regularizing descriptor systems by output feedback , 1994, IEEE Trans. Autom. Control..

[22]  R. Byers,et al.  Descriptor Systems Without Controllability at Infinity , 1997 .

[23]  Ton Geerts Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case , 1993 .

[24]  M. Hautus Stabilization, controllability and observability of linear autonomous systems , 1970 .

[25]  Leon O. Chua,et al.  Linear and nonlinear circuits , 1987 .

[26]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[27]  Ming Hou,et al.  Controllability and elimination of impulsive modes in descriptor systems , 2004, IEEE Transactions on Automatic Control.

[28]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[29]  M. Christodoulou,et al.  Solvability, controllability, and observability of singular systems , 1985 .

[30]  Claus Führer,et al.  Numerical Methods in Multibody Dynamics , 2013 .

[31]  D. Luenberger Dynamic equations in descriptor form , 1977 .

[32]  H. Frankowska,et al.  On controllability and observability of implicit systems , 1990 .

[33]  P. Daoutidis,et al.  Control of nonlinear differential algebraic equation systems , 1999 .

[34]  Ricardo Riaza,et al.  Differential-Algebraic Systems: Analytical Aspects and Circuit Applications , 2008 .

[35]  F. Lewis,et al.  On the regularizability of singular systems , 1990 .

[36]  Basil G. Mertzios,et al.  Decoupling and pole-zero assignment of singular systems with dynamic state feedback , 1986 .

[37]  S. Campbell Singular Systems of Differential Equations , 1980 .

[38]  T. Berger,et al.  Hamburger Beiträge zur Angewandten Mathematik Controllability of linear differential-algebraic systems-A survey , 2012 .

[39]  Guoshan Zhang Regularizability, controllability and observability of rectangular descriptor systems by dynamic compensation , 2006, 2006 American Control Conference.

[40]  S. Zubova On full controllability criteria of a descriptor system. The polynomial solution of a control problem with checkpoints , 2011 .

[41]  E. Fuehrer C. Eich,et al.  Numerical Methods in Multibody Dynamies , 1992 .

[42]  Volker Mehrmann,et al.  Disturbance Decoupling for Descriptor Systems by State Feedback , 2000, SIAM J. Control. Optim..