Quadratic compact knapsack public-key cryptosystem

Knapsack-type cryptosystems were among the first public-key cryptographic schemes to be invented. Their NP-completeness nature and the high speed in encryption/decryption made them very attractive. However, these cryptosystems were shown to be vulnerable to the low-density subset-sum attacks or some key-recovery attacks. In this paper, additive knapsack-type public-key cryptography is reconsidered. We propose a knapsack-type public-key cryptosystem by introducing an easy quadratic compact knapsack problem. The system uses the Chinese remainder theorem to disguise the easy knapsack sequence. The encryption function of the system is nonlinear about the message vector. Under the relinearization attack model, the system enjoys a high density. We show that the knapsack cryptosystem is secure against the low-density subset-sum attacks by observing that the underlying compact knapsack problem has exponentially many solutions. It is shown that the proposed cryptosystem is also secure against some brute-force attacks and some known key-recovery attacks including the simultaneous Diophantine approximation attack and the orthogonal lattice attack.

[1]  Wen Tao Zhu,et al.  Security of the redefined Liaw's broadcasting cryptosystem , 2008, Comput. Math. Appl..

[2]  Noboru Kunihiro New Definition of Density on Knapsack Cryptosystems , 2008, AFRICACRYPT.

[3]  S. Vanstone,et al.  The knapsack problem in cryptography , 1994 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Josef Pieprzyk,et al.  On Public-Key Cryptosystems Built using Polynomial Rings , 1985, EUROCRYPT.

[6]  Chin-Chen Chang,et al.  New Public-Key Cipher System Based Upon the Diophantine Equations , 1995, IEEE Trans. Computers.

[7]  G. M. Clemence,et al.  Blow up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy , 2008, 0811.4359.

[8]  Serge Vaudenay,et al.  Cryptanalysis of the Chor-Rivest Cryptosystem , 1998, CRYPTO.

[9]  A. J. McAuley,et al.  New trapdoor-knapsack public-key cryptosystem , 1985 .

[10]  Andrew Odlyzko,et al.  The Rise and Fall of Knapsack Cryptosystems , 1998 .

[11]  Ronald L. Rivest,et al.  A knapsack-type public key cryptosystem based on arithmetic in finite fields , 1988, IEEE Trans. Inf. Theory.

[12]  Michael Wiener,et al.  Advances in Cryptology — CRYPTO’ 99 , 1999 .

[13]  William A. Webb A Public Key Cryptosystem based on complementing Sets , 1992, Cryptologia.

[14]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[15]  Keisuke Tanaka,et al.  Quantum Public-Key Cryptosystems , 2000, CRYPTO.

[16]  Ping Luo,et al.  New schemes for sharing points on an elliptic curve , 2008, Comput. Math. Appl..

[17]  Jacques Stern,et al.  A New Public-Key Cryptosystem , 1997, EUROCRYPT.

[18]  G. A. Orton,et al.  A Multiple-Iterated Trapdoor for Dense Compact Knapsacks , 1994, EUROCRYPT.

[19]  Jacques Stern,et al.  Adapting Density Attacks to Low-Weight Knapsacks , 2005, ASIACRYPT.

[20]  Jeffrey C. Lagarias,et al.  Knapsack Public Key Cryptosystems and Diophantine Approximation , 1983, CRYPTO.

[21]  Jacques Stern,et al.  Merkle-Hellman Revisited: A Cryptanalysis of the Qu-Vanstone Cryptosystem Based on Group Factorizations , 1997, CRYPTO.

[22]  Yupu Hu,et al.  Diophantine Approximation Attack on a Fast Public Key Cryptosystem , 2006, ISPEC.

[23]  Hu Yupu,et al.  Diophantine approximation attack on a fast public key cryptosystem , 2006 .

[24]  Chi-Sung Laih,et al.  Cryptanalysis if a Diophantine Equation Oriented Public Key Cryptosystem , 1997, IEEE Trans. Computers.

[25]  Masao Kasahara,et al.  A New Product-Sum Public-Key Cryptosystem Using Message Extension , 2001 .

[26]  Yupu Hu,et al.  A knapsack-based probabilistic encryption scheme , 2007, Inf. Sci..

[27]  A. Shamir A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem , 1982, FOCS 1982.

[28]  Martin E. Hellman,et al.  Hiding information and signatures in trapdoor knapsacks , 1978, IEEE Trans. Inf. Theory.

[29]  Ernest F. Brickell,et al.  Solving Low Density Knapsacks , 1983, CRYPTO.

[30]  Antoine Joux,et al.  Improved low-density subset sum algorithms , 1992, computational complexity.

[31]  Takeshi Koshiba,et al.  Low-density attack revisited , 2007, Des. Codes Cryptogr..

[32]  Valtteri Niemi,et al.  A New Trapdoor in Knapsacks , 1991, EUROCRYPT.

[33]  E. Brickell,et al.  Cryptanalysis: a survey of recent results , 1988, Proc. IEEE.

[34]  Masao Kasahara,et al.  New Public-Key Cryptosystem Using Discrete Logarithms over GF(p) , 1991 .

[35]  Jeffrey C. Lagarias,et al.  Solving low density subset sum problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[36]  Gustavus J. Simmons,et al.  Contemporary Cryptology: The Science of Information Integrity , 1994 .

[37]  Jukka A. Koskinen Non-injective knapsack public-key cryptosystems , 2001, Theor. Comput. Sci..

[38]  Mun-Kyu Lee,et al.  Low-Density Attack of Public-Key Cryptosystems Based on Compact Knapsacks , 1999 .

[39]  Adi Shamir,et al.  On the security of the Merkle- Hellman cryptographic scheme (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[40]  K. B. Lakshmanan,et al.  A Public-Key Cryptosystem Based on the Matrix Cover NP-Complete Problem , 1983, CRYPTO.

[41]  Keisuke Tanaka,et al.  Density Attack to the Knapsack Cryptosystems with Enumerative Source Encoding , 2004 .