Arithmetic Issues in Geometric Computations

This paper rst recalls by some examples the damages that the numerical inaccuracy of the oating-point arithmetic can cause during geometric computations, and it intends to explain why damages for geometric computations diier from those met in numerical computations. Then it surveys the various approaches proposed to overcome inaccuracy diiculties; conservative approaches use classical geometric methods but withèxotic' arithmetics instead of the standard oating-point one; radical ones go farther and reject classical techniques, considering them not robust enough against inaccuracy.

[1]  A. Baker,et al.  A concise introduction to the theory of numbers , 1984 .

[2]  Thomas Ottmann,et al.  Numerical stability of geometric algorithms , 1987, SCG '87.

[3]  Victor J. Milenkovic,et al.  Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic , 1989, Artif. Intell..

[4]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[5]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[6]  Michel Gangnet,et al.  Incremental computation of planar maps , 1989, SIGGRAPH '89.

[7]  Mark Segal,et al.  Using tolerances to guarantee valid polyhedral modeling results , 1990, SIGGRAPH.

[8]  Lee R. Nackman,et al.  Efficient Delaunay triangulation using rational arithmetic , 1991, TOGS.

[9]  Donald E. Knuth,et al.  Axioms and Hulls , 1992, Lecture Notes in Computer Science.

[10]  John F. Canny,et al.  An efficient approach to removing geometric degeneracies , 1992, SCG '92.

[11]  N. P. Juster,et al.  Modelling and representation of dimensions and tolerances: a survey , 1992, Comput. Aided Des..

[12]  M. Iri,et al.  Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.

[13]  Gabriel Taubin An accurate algorithm for rasterizing algebraic curves , 1993, Solid Modeling and Applications.

[14]  Victor J. Milenkovic,et al.  An Experiment Using LN for Exact Geometric Computations , 1993, CCCG.

[15]  Aristides A. G. Requicha,et al.  A Paradigm for the Robust Design of Algorithms for Geometric Modeling , 1994, Comput. Graph. Forum.

[16]  Boundary evaluation of CSG models by adaptive triangulation , 1994 .

[17]  David J. Jackson,et al.  Boundary representation modelling with local tolerances , 1995, Symposium on Solid Modeling and Applications.

[18]  D. Michelucci An epsilon-Arithmetic for Removing Degeneracies , 1995 .

[19]  Rae A. Earnshaw,et al.  Computer Graphics in Rapid Prototyping Technology , 1995 .

[20]  Mariette Yvinec,et al.  Evaluation of a new method to compute signs of determinants , 1995, SCG '95.

[21]  Françoise Goupil-Testu Un outil graphique interactif d'aide à l'interprétation de résultats d'analyse de données , 1995, Monde des Util. Anal. Données.

[22]  Jorge Stolfi,et al.  Adaptive Enumeration of Implicit Surfaces with Affine Arithmetic , 1996, Comput. Graph. Forum.

[23]  Dominique Michelucci,et al.  Lazy Arithmetic , 1997, IEEE Trans. Computers.