QuantumDARTS: Differentiable Quantum Architecture Search for Variational Quantum Algorithms

With the arrival of the Noisy Intermediate-Scale Quantum (NISQ) era and the fast development of machine learning, variational quantum algorithms (VQA) including Variational Quantum Eigensolver (VQE) and quantum neural network (QNN) have received increasing attention with wide potential applications in foreseeable near future. We study the problem of quantum architecture search (QAS) for VQA to automatically design parameterized quantum circuits (PQC). We devise a differentiable searching algorithm based on Gumbel-Softmax in contrast to peer meth-ods that often require numerous circuit sampling and evaluation. Two versions of our algorithm are provided, namely macro search and micro search, where macro search directly searches for the whole circuit like other literature while the innovative micro search is able to infer the sub-circuit structure from a small-scale and then transfer that to a large-scale problem. We conduct intensive experiments on unweighted Max-Cut, ground state energy estimation, and image clas-sification. The superior performance shows the efficiency and capability of macro search, which requires little prior knowledge. Moreover, the experiments on micro search show the potential of our algorithm for large-scale QAS problems.

[1]  Junchi Yan,et al.  EAutoDet: Efficient Architecture Search for Object Detection , 2022, ECCV.

[2]  D. Park,et al.  Quantum convolutional neural network for classical data classification , 2022, Quantum Machine Intelligence.

[3]  Samuel Yen-Chi Chen,et al.  Quantum Architecture Search via Continual Reinforcement Learning , 2021, ArXiv.

[4]  Junchi Yan,et al.  ZARTS: On Zero-order Optimization for Neural Architecture Search , 2021, NeurIPS.

[5]  L. Kim,et al.  Quantum convolutional neural network for classical data classification , 2021, Quantum Machine Intelligence.

[6]  David Z. Pan,et al.  QuantumNAS: Noise-Adaptive Search for Robust Quantum Circuits , 2021, 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA).

[7]  Haibin Zhang,et al.  Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. , 2021, Physical review letters.

[8]  Yao-Lung L. Fang,et al.  Quantum Architecture Search via Deep Reinforcement Learning , 2021, ArXiv.

[9]  Lea M. Trenkwalder,et al.  Reinforcement learning for optimization of variational quantum circuit architectures , 2021, NeurIPS.

[10]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[11]  Richard Strong Bowen,et al.  Channel Selection Using Gumbel Softmax , 2020, ECCV.

[12]  S. Gelly,et al.  An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale , 2020, ICLR.

[13]  Min-Hsiu Hsieh,et al.  Quantum circuit architecture search for variational quantum algorithms , 2020, npj Quantum Information.

[14]  Chang-Yu Hsieh,et al.  Differentiable quantum architecture search , 2020, Quantum Science and Technology.

[15]  Junchi Yan,et al.  DARTS-: Robustly Stepping out of Performance Collapse Without Indicators , 2020, ICLR.

[16]  Yonggang Hu,et al.  MergeNAS: Merge Operations into One for Differentiable Architecture Search , 2020, IJCAI.

[17]  Harper R. Grimsley,et al.  Qubit-ADAPT-VQE: An Adaptive Algorithm for Constructing Hardware-Efficient Ansätze on a Quantum Processor , 2019, 1911.10205.

[18]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[19]  Giacomo Nannicini,et al.  Improving Variational Quantum Optimization using CVaR , 2019, Quantum.

[20]  Yi Yang,et al.  Searching for a Robust Neural Architecture in Four GPU Hours , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Gaofeng Meng,et al.  Differentiable Architecture Search with Ensemble Gumbel-Softmax , 2019, ArXiv.

[22]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[23]  Nicolai Friis,et al.  Optimizing Quantum Error Correction Codes with Reinforcement Learning , 2018, Quantum.

[24]  David W. Corne,et al.  Multi-objective evolutionary algorithms for quantum circuit discovery , 2018, ArXiv.

[25]  Soonwon Choi,et al.  Quantum convolutional neural networks , 2018, Nature Physics.

[26]  Yiming Yang,et al.  DARTS: Differentiable Architecture Search , 2018, ICLR.

[27]  Kirthevasan Kandasamy,et al.  Neural Architecture Search with Bayesian Optimisation and Optimal Transport , 2018, NeurIPS.

[28]  Alok Aggarwal,et al.  Regularized Evolution for Image Classifier Architecture Search , 2018, AAAI.

[29]  Yudong Cao,et al.  OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.

[30]  José David Martín-Guerrero,et al.  Quantum autoencoders via quantum adders with genetic algorithms , 2017, Quantum Science and Technology.

[31]  Vijay Vasudevan,et al.  Learning Transferable Architectures for Scalable Image Recognition , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[32]  Jianxin Wu,et al.  ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[33]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[34]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[35]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[36]  L. Lamata,et al.  Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience , 2016, 1611.07851.

[37]  Ben Poole,et al.  Categorical Reparameterization with Gumbel-Softmax , 2016, ICLR.

[38]  Frank Hutter,et al.  SGDR: Stochastic Gradient Descent with Warm Restarts , 2016, ICLR.

[39]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  M Sanz,et al.  Genetic Algorithms for Digital Quantum Simulations. , 2015, Physical review letters.

[41]  Vitaly G. Deibuk,et al.  Design of a Ternary Reversible/Quantum Adder using Genetic Algorithm , 2015 .

[42]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[43]  Jeongho Bang,et al.  A genetic-algorithm-based method to find unitary transformations for any desired quantum computation and application to a one-bit oracle decision problem , 2014, 1403.2827.

[44]  Yoshua Bengio,et al.  Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation , 2013, ArXiv.

[45]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[46]  Susan Stepney,et al.  Evolving Quantum Circuits and Programs Through Genetic Programming , 2004, GECCO.

[47]  Alexander G. Gray,et al.  Automated Design of Quantum Circuits , 1998, QCQC.

[48]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[49]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[50]  Rodney J. Bartlett,et al.  Alternative coupled-cluster ansätze II. The unitary coupled-cluster method , 1989 .

[51]  Mark R. Hoffmann,et al.  A unitary multiconfigurational coupled‐cluster method: Theory and applications , 1988 .

[52]  B. Brookes,et al.  Statistical Theory of Extreme Values and Some Practical Applications , 1955, The Mathematical Gazette.

[53]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[54]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[55]  T. Paul,et al.  Quantum computation and quantum information , 2001, SOEN.

[56]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[57]  Martin Gennis,et al.  Explorations in Quantum Computing , 2001, Künstliche Intell..

[58]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[59]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[60]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[61]  H. Zeh On the interpretation of measurement in quantum theory , 1970 .

[62]  L. M. Milne-Thomson Methoden der mathematischen Physik , 1944, Nature.