Strong jump inversion

We say that a structure $\mathcal{A}$ admits \emph{strong jump inversion} provided that for every oracle $X$, if $X'$ computes $D(\mathcal{C})'$ for some $\mathcal{C}\cong\mathcal{A}$, then $X$ computes $D(\mathcal{B})$ for some $\mathcal{B}\cong\mathcal{A}$. Jockusch and Soare \cite{JS} showed that there are low linear orderings without computable copies, but Downey and Jockusch \cite{DJ} showed that every Boolean algebra admits strong jump inversion. More recently, D.\ Marker and R.\ Miller \cite{MM} have shown that all countable models of $DCF_0$ (the theory of differentially closed fields of characteristic $0$) admit strong jump inversion. We establish a general result with sufficient conditions for a structure $\mathcal{A}$ to admit strong jump inversion. Our conditions involve an enumeration of $B_1$-types, where these are made up of formulas that are Boolean combinations of existential formulas. Our general result applies to some familiar kinds of structures, including some classes of linear orderings and trees. We do not get the result of Downey and Jockusch for arbitrary Boolean algebras, but we do get a result for Boolean algebras with no $1$-atom, with some extra information on the complexity of the isomorphism. Our general result gives the result of Marker and Miller. In order to apply our general result, we produce a computable enumeration of the types realized in models of $DCF_0$. This also yields the fact that the saturated model of $DCF_0$ has a decidable copy.

[1]  A. Stukachev,et al.  A jump inversion theorem for the semilattices of sigma-degrees , 2010 .

[2]  Michael Stob,et al.  Computable Boolean algebras , 2000, Journal of Symbolic Logic.

[3]  Terrence Millar Foundations of recursive model theory , 1978 .

[4]  László Fuchs,et al.  Infinite Abelian groups , 1970 .

[5]  Julia F. Knight,et al.  Generic Copies of Countable Structures , 1989, Ann. Pure Appl. Log..

[6]  S. S. Goncharov Strong constructivizability of homogeneous models , 1978 .

[7]  Antonio Montalbán,et al.  Rice sequences of relations , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Julia A. Knight,et al.  Computable structures and the hyperarithmetical hierarchy , 2000 .

[9]  M. G. Peretyat'kin Criterion for strong constructivizability of a homogeneous model , 1978 .

[10]  A. N. Frolov Δ20-copies of linear orderings , 2006 .

[11]  Russell G. Miller,et al.  Turing degree spectra of differentially Closed Fields , 2017, J. Symb. Log..

[12]  Ivan N. Soskov,et al.  A Jump Inversion Theorem for the Degree Spectra , 2009, J. Log. Comput..

[13]  Gerald E. Sacks,et al.  Saturated Model Theory , 1972 .

[14]  Robert I. Soare,et al.  Degrees of Orderings Not Isomorphic to Recursive Linear Orderings , 1991, Ann. Pure Appl. Log..

[15]  Peter Koepke,et al.  Ash's theorem for abstract structures , 2016 .

[16]  Joaquín Pascual,et al.  Infinite Abelian Groups , 1970 .

[17]  Carl G. Jockusch,et al.  Every low Boolean algebra is isomorphic to a recursive one , 1994 .

[18]  V. Baleva,et al.  The jump operation for structure degrees , 2006, Arch. Math. Log..

[19]  Andrey N. Frolov Low linear orderings , 2012, J. Log. Comput..

[20]  Michael Morley Decidable models , 1976 .

[21]  A. N. Frolov Linear Orderings of Low Degree , 2010 .

[22]  Julia A. Knight Nonarithmetical a 0 -categorical theories with recursive models , 1994 .

[23]  Antonio Montalbán,et al.  Notes on the Jump of a Structure , 2009, CiE.

[24]  Angus Macintyre,et al.  Degrees of recursively saturated models , 1984 .

[25]  John Chisholm,et al.  Effective model theory vs. recursive model theory , 1990, Journal of Symbolic Logic.

[26]  James H. Schmerl,et al.  Theories with recursive models , 1979, Journal of Symbolic Logic.

[27]  V. Puzarenko A certain reducibility on admissible sets , 2009 .

[28]  A. S. Morozov,et al.  On the Relation of Σ-Reducibility Between Admissible Sets , 2004 .