Structural studies of the Alzheimer's amyloid precursor protein copper-binding domain reveal how it binds copper ions.

[1]  A. Abragam,et al.  Electron paramagnetic resonance of transition ions , 1970 .

[2]  J. Peisach,et al.  Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins. , 1974, Archives of biochemistry and biophysics.

[3]  H. Yokoi,et al.  Spectroscopic and redox properties of pseudotetrahedral copper(II) complexes. Their relation to copper proteins , 1977 .

[4]  Wojciech Froncisz,et al.  Broadening by strains of lines in the g‐parallel region of Cu2+ EPR spectra , 1980 .

[5]  K. Grzeschik,et al.  The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor , 1987, Nature.

[6]  K. Hodgson,et al.  X-ray absorption edge determination of the oxidation state and coordination number of copper: application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen , 1987 .

[7]  L. Villa-komaroff,et al.  Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer's disease , 1988, Nature.

[8]  K. Ueda,et al.  Three types of amyloid protein precursor mRNA in human brain: their differential expression in Alzheimer's disease. , 1988, Biochemical and biophysical research communications.

[9]  D. Selkoe,et al.  Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide , 1993, Cell.

[10]  J. Rehr,et al.  High-order multiple-scattering calculations of x-ray-absorption fine structure. , 1992, Physical review letters.

[11]  K. Karlin,et al.  Bioinorganic Chemistry of Copper , 1993, Springer Netherlands.

[12]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[13]  C. Masters,et al.  The βA4 amyloid precursor protein binding to copper , 1994 .

[14]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[15]  P. Ellis,et al.  XFIT - an Interactive EXAFSAnalysis Program. , 1995, Journal of synchrotron radiation.

[16]  C. Masters,et al.  The Amyloid Precursor Protein of Alzheimer's Disease in the Reduction of Copper(II) to Copper(I) , 1996, Science.

[17]  M. Murphy,et al.  Structure of Nitrite Bound to Copper-containing Nitrite Reductase from Alcaligenes faecalis , 1997, The Journal of Biological Chemistry.

[18]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[19]  C. Masters,et al.  Reactive oxygen species and Alzheimer's disease. , 1997, Biochemical pharmacology.

[20]  S. Kohsaka,et al.  The amino-terminal region of amyloid precursor protein is responsible for neurite outgrowth in rat neocortical explant culture. , 1997, Biochemical and biophysical research communications.

[21]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[22]  C. Masters,et al.  Crystal structure of the N-terminal, growth factor-like domain of Alzheimer amyloid precursor protein , 1999, Nature Structural Biology.

[23]  C. Masters,et al.  Copper inhibits beta-amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursor-protein secretion. , 1999, The Biochemical journal.

[24]  C. Masters,et al.  The Alzheimer's Disease Amyloid Precursor Protein Modulates Copper-Induced Toxicity and Oxidative Stress in Primary Neuronal Cultures , 1999, The Journal of Neuroscience.

[25]  R. Barbour,et al.  Purification and cloning of amyloid precursor protein β-secretase from human brain , 1999, Nature.

[26]  R M Esnouf,et al.  Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. , 1999, Acta crystallographica. Section D, Biological crystallography.

[27]  Alfredo G. Tomasselli,et al.  Membrane-anchored aspartyl protease with Alzheimer's disease β-secretase activity , 1999, Nature.

[28]  C. Masters,et al.  Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice , 1999, Brain Research.

[29]  B. Strooper,et al.  Proteolytic processing and cell biological functions of the amyloid precursor protein. , 2000, Journal of cell science.

[30]  K. Beyreuther,et al.  What the evolution of the amyloid protein precursor supergene family tells us about its function , 2000, Neurochemistry International.

[31]  G. Multhaup,et al.  Differential effects of zinc on amyloid precursor protein (APP) processing in copper-resistant variants of cultured Chinese hamster ovary cells. , 2000, Cellular and molecular biology.

[32]  Harry B. Gray,et al.  Copper coordination in blue proteins , 2000, JBIC Journal of Biological Inorganic Chemistry.

[33]  T. Bayer,et al.  Homodimerization of Amyloid Precursor Protein and Its Implication in the Amyloidogenic Pathway of Alzheimer's Disease* , 2001, The Journal of Biological Chemistry.

[34]  I. Bertini,et al.  Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1. , 2001, Biochemistry.

[35]  Thomas C. Südhof,et al.  A Transcriptively Active Complex of APP with Fe65 and Histone Acetyltransferase Tip60 , 2001, Science.

[36]  C. Masters,et al.  Alzheimer's Disease Amyloid-β Binds Copper and Zinc to Generate an Allosterically Ordered Membrane-penetrating Structure Containing Superoxide Dismutase-like Subunits* , 2001, The Journal of Biological Chemistry.

[37]  C. Masters,et al.  Overexpression of Alzheimer's Disease Amyloid-β Opposes the Age-dependent Elevations of Brain Copper and Iron* , 2002, The Journal of Biological Chemistry.

[38]  G. C. Ferreira,et al.  Unraveling the substrate-metal binding site of ferrochelatase: an X-ray absorption spectroscopic study. , 2002, Biochemistry.

[39]  A. Hooper,et al.  Nitrosocyanin, a red cupredoxin-like protein from Nitrosomonas europaea. , 2002, Biochemistry.

[40]  D. Selkoe Alzheimer's Disease Is a Synaptic Failure , 2002, Science.

[41]  C. Haass,et al.  Alzheimer disease γ-secretase: a complex story of GxGD-type presenilin proteases , 2002 .

[42]  B. Ames,et al.  Heme deficiency may be a factor in the mitochondrial and neuronal decay of aging , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. Westaway,et al.  In vivo reduction of amyloid-β by a mutant copper transporter , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  E. Masliah,et al.  Amyloid β protein toxicity mediated by the formation of amyloid‐β protein precursor complexes , 2003 .

[45]  T. Bayer,et al.  Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Aβ production in APP23 transgenic mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  C. Masters,et al.  Structure of the Alzheimer's Disease Amyloid Precursor Protein Copper Binding Domain , 2003, The Journal of Biological Chemistry.

[47]  C. Combs,et al.  Amyloid Precursor Protein Mediates Proinflammatory Activation of Monocytic Lineage Cells* , 2004, Journal of Biological Chemistry.

[48]  K. E. Gates,et al.  XSophe-Sophe-XeprView. A computer simulation software suite (v. 1.1.3) for the analysis of continuous wave EPR spectra. , 2004, Journal of inorganic biochemistry.

[49]  A. Rosato,et al.  Solution structure of the apo and copper(I)-loaded human metallochaperone HAH1. , 2004, Biochemistry.

[50]  T. Bayer,et al.  Clioquinol Mediates Copper Uptake and Counteracts Copper Efflux Activities of the Amyloid Precursor Protein of Alzheimer's Disease* , 2004, Journal of Biological Chemistry.

[51]  Yongcheng Wang,et al.  The X-ray structure of an antiparallel dimer of the human amyloid precursor protein E2 domain. , 2004, Molecular cell.

[52]  Colin L Masters,et al.  Gene knockout of amyloid precursor protein and amyloid precursor‐like protein‐2 increases cellular copper levels in primary mouse cortical neurons and embryonic fibroblasts , 2004, Journal of neurochemistry.

[53]  A. Rosato,et al.  Solution structure and backbone dynamics of the Cu(I) and apo forms of the second metal-binding domain of the Menkes protein ATP7A. , 2004, Biochemistry.

[54]  C. Masters,et al.  Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer's disease β‐amyloid , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[55]  S. Prigge,et al.  Dioxygen Binds End-On to Mononuclear Copper in a Precatalytic Enzyme Complex , 2004, Science.

[56]  Robert K Szilagyi,et al.  Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. , 2004, Chemical reviews.

[57]  K. Freeman,et al.  BACE1 Cytoplasmic Domain Interacts with the Copper Chaperone for Superoxide Dismutase-1 and Binds Copper* , 2005, Journal of Biological Chemistry.

[58]  Frances M. G. Pearl,et al.  The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis , 2004, Nucleic Acids Res..

[59]  R. Paro,et al.  Homo‐ and heterodimerization of APP family members promotes intercellular adhesion , 2005, The EMBO journal.

[60]  C. Masters,et al.  Crystallization and preliminary crystallographic studies of the copper-binding domain of the amyloid precursor protein of Alzheimer's disease. , 2005, Acta crystallographica. Section F, Structural biology and crystallization communications.

[61]  K. Hodgson,et al.  Spectroscopic and density functional studies of the red copper site in nitrosocyanin: role of the protein in determining active site geometric and electronic structure. , 2005, Journal of the American Chemical Society.

[62]  R. Huber,et al.  Handbook of metalloproteins , 2006 .

[63]  C. Masters,et al.  Solution conformation and heparin-induced dimerization of the full-length extracellular domain of the human amyloid precursor protein. , 2006, Journal of molecular biology.