Synthesis of Bounded Integer Parameters for Parametric Timed Reachability Games

We deal with a parametric version of timed game automata (PGA), where clocks can be compared to parameters, and parameter synthesis. As usual, parametrization leads to undecidability of the most interesting problems, such as reachability game. It is not surprising then that the symbolic exploration of the state-space often does not terminate. It is known that the undecidability remains even when severely restricting the form of the parametric constraints. Since in classical timed automata, real-valued clocks are always compared to integers for all practical purposes, we solve undecidability and termination issues by computing parameters as bounded integers. We give a symbolic algorithm that computes the set of winning states for a given PGA and the corresponding set of bounded integer parameter valuations as symbolic constraints between parameters. We argue the relevance of this approach and demonstrate its practical usability with a small case-study.

[1]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[2]  Didier Lime,et al.  Real-time control with parametric timed reachability games , 2012, WODES.

[3]  Kim G. Larsen,et al.  Automatic Synthesis of Robust and Optimal Controllers - An Industrial Case Study , 2009, HSCC.

[4]  Thomas A. Henzinger,et al.  Symbolic Model Checking for Real-Time Systems , 1994, Inf. Comput..

[5]  Véronique Bruyère,et al.  Real-Time Model-Checking: Parameters everywhere , 2003, Log. Methods Comput. Sci..

[6]  Kim G. Larsen,et al.  Efficient On-the-Fly Algorithms for the Analysis of Timed Games , 2005, CONCUR.

[7]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[8]  Salvatore La Torre,et al.  Decision problems for lower/upper bound parametric timed automata , 2009, Formal Methods Syst. Des..

[9]  Joseph Sifakis,et al.  On the Synthesis of Discrete Controllers for Timed Systems (An Extended Abstract) , 1995, STACS.

[10]  Vincent Danos,et al.  Transactions in RCCS , 2005, CONCUR.

[11]  Thomas A. Henzinger,et al.  Parametric real-time reasoning , 1993, STOC.

[12]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[13]  F. Vaandrager,et al.  Linear Parametric Model Checking of Timed Automata , 2001 .

[14]  Marcin Jurdzinski,et al.  Comparing Timed C/E Systems with Timed Automata , 1996 .

[15]  A. Pnueli,et al.  CONTROLLER SYNTHESIS FOR TIMED AUTOMATA , 2006 .

[16]  Kim G. Larsen,et al.  UPPAAL-Tiga: Time for Playing Games! , 2007, CAV.

[17]  Emmanuelle Encrenaz-Tiphène,et al.  An Inverse Method for Parametric Timed Automata , 2008, Electron. Notes Theor. Comput. Sci..

[18]  Didier Lime,et al.  Integer Parameter Synthesis for Timed Automata , 2013, TACAS.

[19]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[20]  Joseph Sifakis,et al.  Controller Synthesis for Timed Automata 1 , 1998 .