Optimal split ratio in Switched Flux Permanent Magnet machines

In this paper, it is shown that the split ratio of stator inner diameter to outer diameter influences the torque density in Switched Flux Permanent Magnet (SFPM) machines more heavily than that of conventional Permanent Magnets (PM) machines, since PM are inserted in the stator for SFPM machines. This paper presents a simplified Magnetic Circuit Analysis(MCA) method to analytically optimize the split ratio in order to maximize torque density of SFPM machines, and the method accuracy is verified by the Finite-Element Method (FEM).

[1]  J. T. Chen,et al.  Influence of the Rotor Pole Number on Optimal Parameters in Flux-Switching PM Brushless AC Machines by the Lumped-Parameter Magnetic Circuit Model , 2009, IEEE Transactions on Industry Applications.

[2]  Z. Zhu,et al.  Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines , 2002 .

[3]  D. Howe,et al.  Analysis of electromagnetic performance of flux-switching permanent-magnet Machines by nonlinear adaptive lumped parameter magnetic circuit model , 2005, IEEE Transactions on Magnetics.

[4]  Z. Zhu,et al.  Instantaneous magnetic field distribution in brushless permanent magnet DC motors. III. Effect of stator slotting , 1993 .

[5]  S. Z. Jiang,et al.  Analytical Modeling of Open-Circuit Air-Gap Field Distributions in Multisegment and Multilayer Interior Permanent-Magnet Machines , 2009, IEEE Transactions on Magnetics.

[6]  C. Sadarangani,et al.  Winding factors and Joule losses of permanent magnet machines with concentrated windings , 2003, IEEE International Electric Machines and Drives Conference, 2003. IEMDC'03..

[7]  Hamid Ben Ahmed,et al.  Switching flux permanent magnet polyphased synchronous machines , 1997 .

[8]  Mehdi Moallem,et al.  An improved magnetic equivalent circuit method for predicting the characteristics of highly saturated electromagnetic devices , 1998 .

[9]  D. Howe,et al.  Stator and Rotor Pole Combinations for Multi-Tooth Flux-Switching Permanent-Magnet Brushless AC Machines , 2008, IEEE Transactions on Magnetics.

[10]  Takashi Kosaka,et al.  Simple nonlinear magnetic analysis for permanent magnet motors , 2003 .

[11]  K. T. Chau,et al.  Static Characteristics of a New Doubly Salient Permanent Magnet Motor , 2001, IEEE Power Engineering Review.

[12]  T. Lipo,et al.  Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance , 2006, IEEE Transactions on Magnetics.

[13]  Thomas M. Jahns,et al.  A saturating lumped-parameter model for an interior PM synchronous machine , 2002 .

[14]  S. E. Rauch,et al.  Design Principles of Flux-Switch Alternators [includes discussion] , 1955, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems.

[15]  E. Hoang,et al.  A new structure of a switching flux synchronous polyphased machine with hybrid excitation , 2007, 2007 European Conference on Power Electronics and Applications.

[16]  Z. Zhu,et al.  Winding Configurations and Optimal Stator and Rotor Pole Combination of Flux-Switching PM Brushless AC Machines , 2010, IEEE Transactions on Energy Conversion.

[17]  Z. Zhu,et al.  Instantaneous magnetic field distribution in brushless permanent magnet DC motors. I. Open-circuit field , 1993 .

[18]  M. Cheng,et al.  Static Characteristics of a New Doubly Salient Permanent Magnet Motor , 2001, IEMDC 2001.