Trace and minor elements in sphalerite: A LA-ICPMS study

Sphalerite is an important host mineral for a wide range of minor and trace elements. We have used laser-ablation inductively Coupled mass spectroscopy (LA-ICPMS) techniques to investigate the distribution of Ag, As. Bi, Cd, Co, Cu. Fe, Ga. Ge, In, Mn, Mo, Ni, Pb, Sb, Se, Sri and TI in samples from 26 ore deposits, including specimens with wt.% levels of Mn, Cd, In, Sri and Hg. This technique provides accurate trace element data, confirming that Cd, Co, Ga, Ge, In, Mn, Sri, As and TI are present in solid solution. The concentrations of most elements vary over several orders of magnitude between deposits and in some cases between single samples from a given deposit. Sphalerite is characterized by a specific range of Cd (typically 0.2-1.0 wt.%) in each deposit. Higher Cd concentrations are rare; spot analyses on samples from skarn at Baisoara (Romania) show Lip to 13.2 wt.% (Cd2+ Zn2+ Substitution). The LA-ICPMS technique also allows for identification of other elements, notably Pb, Sb and Bi, mostly as micro-inclusions of minerals carrying those elements, and not as solid solution. Silver may occur both as solid Solution and as micro-inclusions. Sphalerite can also incorporate minor amounts of As and Se, and possibly Au (e.g., Magura epithermal An, Romania). Manganese enrichment (up to similar to 4 wt.%) does not appear to enhance incorporation of other elements. Sphalerite from Toyoha (Japan) features superimposed zoning. Indium-sphalerite (Lip to 6.7 wt.% In) coexists with Sn-sphalerite (up to 2.3 wt.%). Indium concentration correlates with Cu. corroborating coupled (Cu+In3+) 2Zn(2+) substitution. Tin. however, correlates with Ag, suggesting (2Ag(+)Sn(4+)) 3 Zn2+ Coupled substitution. Germanium-bearing sphalerite from Tres Marias (Mexico) contains several hundred ppm Ge, correlating with Fe. We see no evidence of coupled substitution for incorporation of Ge. Accordingly, we postulate that Ge may be present its Ge2+ rather than Ge4+. Trace element concentrations in different deposit types vary because fractionation of a given element into sphalerite is influenced by crystallization temperature, metal Source and the amount of sphalerite in the ore. Epithermal and some skarn deposits have higher concentrations of most elements in solid solution. The presence of discrete minerals containing I it, Ga, Ge, etc. also contribute to the observed variance in measured concentrations within sphalerite.

[1]  P. Bethke,et al.  Distribution of some minor elements between coexisting sulfide minerals , 1971 .

[2]  T. Grammatikopoulos,et al.  Compositional variation in Hg-bearing sphalerite from the polymetallic Eskay Creek deposit, British Columbia, Canada , 2006 .

[3]  J. Kuhlemann,et al.  VARIATIONS OF SULFUR ISOTOPES, TRACE ELEMENT COMPOSITIONS, AND CATHODOLUMINESCENCE OF MISSISSIPPI VALLEY-TYPE Pb-Zn ORES FROM THE DRAU RANGE, EASTERN ALPS (SLOVENIA-AUSTRIA): IMPLICATIONS FOR ORE DEPOSITION ON A REGIONAL VERSUS MICROSCALE , 2001 .

[4]  J. Minčeva-Stefanova A morphological SEM study of wurtzite-sphalerite relationships in specimens from Zvezdel, Bulgaria , 1993 .

[5]  N. Cook Bismuth and bismuth–antimony sulphosalts from Neogene vein mineralisation, Baia Borşa area, Maramureş, Romania , 1997, Mineralogical Magazine.

[6]  I. Kjarsgaard,et al.  Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick, Canada , 2006 .

[7]  A. Pring,et al.  Micron- to nano-scale intergrowths among members of the cuprobismutite series and paděraite: HRTEM and microanalytical evidence , 2004, Mineralogical magazine.

[8]  Charles M. Taylor,et al.  Micromineralogy of silver-bearing sphalerite from Flat river, Missouri , 1969 .

[9]  R. Höll,et al.  Metallogenesis of germanium—A review , 2007 .

[10]  S. Scott,et al.  Solubility of gallium in sphalerite and wurtzite at 800 degrees C and 900 degrees C , 1991 .

[11]  J. Craig,et al.  The Cu-Zn-S system , 1973 .

[12]  C. Siebe,et al.  Weathering of sulphide minerals and trace element speciation in tailings of various ages in the Guanajuato mining district, Mexico , 2007 .

[13]  B. Dunn,et al.  Solid-State Phase Equilibria in the ZnS-CdS System , 1988 .

[14]  M. Epple,et al.  Crystal-chemical characterization of mixed-valent indium chalcogenides by X-ray absorption spectroscopy (EXAFS) , 2000 .

[15]  R. Smart,et al.  A comparison of the kinetics and mechanism of acid leaching of sphalerite containing low and high concentrations of iron , 2004 .

[16]  G. Wagner,et al.  Structure and phase relations of the Zn2x(CuIn)1−xS2 solid solution series , 2005 .

[17]  D. Vaughan,et al.  Compositional zoning in sphalerite crystals , 2005 .

[18]  E. Burke,et al.  Roquesite and Cu-In-bearing sphalerite from Laangban, Bergslagen, Sweden , 1980 .

[19]  A. Putnis Mineral replacement reactions: from macroscopic observations to microscopic mechanisms , 2002, Mineralogical Magazine.

[20]  M. Bernroider,et al.  Colour, crystal chemistry, and mineral association of a green sphalerite from Steinperf, Dill Syncline, FRG , 1996 .

[21]  N. Cook,et al.  Intergrowths of bismuth sulphosalts from the Ocna de Fier Fe-skarn deposit, Banat, Southwest Romania , 2000 .

[22]  J. Crocket,et al.  A gold-sphalerite association in a volcanogenic base-metal-sulfide deposit near Tilt Cove, Newfoundland , 1985 .

[23]  I. Pirri On the occurrence of selenium in sulfides of the ore deposit of Baccu Locci (Gerrei, SE Sardinia) , 2002 .

[24]  B. M. Miller,et al.  Variations in minor and trace metals in sphalerite from mississippi valley-type deposits of the Ozark region; genetic implications; reply , 1992 .

[25]  J. Nriagu Thallium in the environment , 1998 .

[26]  S. Ishihara,et al.  Indium and other trace elements in volcanogenic massive sulfide ores from the Kuroko, Besshi and other types in Japan , 2007 .

[27]  B. Öhlander,et al.  An attempt to use LA-ICP-SMS to quantify enrichment of trace elements on pyrite surfaces in oxidizing mine tailings , 2007 .

[28]  I. L'Heureux,et al.  Mechanism and duration of banding in Mississippi Valley‐type sphalerite , 2001 .

[29]  I. L'Heureux,et al.  Self-organized banded sphalerite and branching galena in the Pine Point ore deposit, Northwest Territories , 1996 .

[30]  R. Pattrick,et al.  Acid leaching and dissolution of major sulphide ore minerals: processes and galvanic effects in complex systems , 2004, Mineralogical Magazine.

[31]  M. Shimizu,et al.  Sakuraiite; chemical composition and extent of (Zn, Fe)In-FOR-CuSn substitution , 1986 .

[32]  K. Rosso,et al.  Chemical Bonding in Sulfide Minerals , 2006 .

[33]  N. Cook,et al.  Paragenesis of Cu-Fe ores from Ocna de Fier-Dognecea (Romania), typifying fluid plume mineralization in a proximal skarn setting , 2001, Mineralogical Magazine.

[34]  D. Günther,et al.  Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation , 1996 .

[35]  G. Olivo,et al.  Paragenesis and mineral chemistry of alabandite (MnS) from the Ag-rich Santo Toribio epithermal deposit, Northern Peru , 2003, Mineralogical Magazine.

[36]  W. Gottesmann,et al.  Zn/Cd ratios in calcsilicate-hosted sphalerite ores at Tumurtijn-ovoo, Mongolia , 2007 .

[37]  V. Krämer,et al.  Phase studies in the systems Ag2Te-Ga2Te3, ZnSe-In2Se3 and ZnS-Ga2S3 , 1987 .

[38]  T. Akasaka,et al.  Crystal chemistry of ZnS minerals formed as high-temperature volcanic sublimates : matraite identical with sphalerite , 2008 .

[39]  S. Ishihara,et al.  Resource Evaluation and Some Genetic Aspects of Indium in the Japanese Ore Deposits , 2006 .

[40]  L. Bernstein Germanium geochemistry and mineralogy , 1985 .

[41]  I. Butler,et al.  Trace element distributions in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) , 1999 .

[42]  B. Marshall,et al.  An introduction to remobilization: Information from ore-body geometry and experimental considerations , 1987 .

[43]  M. Intiomale,et al.  Géologie et géochimie du gisement de Kipushi, Zaïre , 1974 .

[44]  F. A. Hummel,et al.  Phase equilibria in the systems ZnSMnS, ZnSCuInS2, and MnSCuInS2 , 1978 .

[45]  T. Oberthür,et al.  Geochemical and mineralogical distribution of germanium in the Khusib Springs Cu–Zn–Pb–Ag sulfide deposit, Otavi Mountain Land, Namibia , 2006 .

[46]  N. Cook,et al.  Sulphide mineralogy, metamorphism and deformation in the Matchless massive sulphide deposit, Namibia , 1994 .

[47]  N. Cook,et al.  Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China) , 2009 .

[48]  N. Cook,et al.  Skarn textures and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania , 2004 .

[49]  E. Ohta Common features and genesis of Tin-polymetallic veins , 1995 .

[50]  E. Ohta Polymetallic Mineralization at the Toyoha Mine, Hokkaido, Japan , 1991 .

[51]  S. Kojima,et al.  Phase relations in the central portion of the Cu-Fe-Zn-S system between 800° and 500°C , 1984 .

[52]  S. Maske,et al.  Mineral deposits of Southern Africa , 1986 .

[53]  H. Lutz,et al.  Phase studies in the systems CoS1bMnS, CoS1bZnS, and CoS1bCdS , 1978 .

[54]  C. Ford,et al.  Experimental extension of the sphalerite geobarometer to 10 kbar , 1978 .

[55]  W. Ridley,et al.  Textural, Compositional, and Sulfur Isotope Variations of Sulfide Minerals in the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska: Implications for Ore Formation , 2004 .

[56]  S. Kojima,et al.  Bulk compositions of intimate intergrowths of chalcopyrite and sphalerite and their genetic implications , 1987 .

[57]  William L. Griffin,et al.  The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology , 2004 .

[58]  Z. Johan,et al.  Analogues germanifères et gallifères des silicates et oxydes dans les gisements de zinc des Pyrénées centrales, France; argutite et carboirite, deux nouvelles espèces minérales , 1983 .

[59]  N. Cook,et al.  Cervelleite, Ag 4 TeS, from three localities in Romania, substitution of Cu, and the occurrence of the associated phase, Ag 2 Cu 2 TeS , 2003 .

[60]  Y. Xiong Hydrothermal thallium mineralization up to 300 °C: A thermodynamic approach , 2007 .

[61]  Thomas Seifert,et al.  Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany , 2006 .

[62]  I. V. Mitchell,et al.  Surface structure of sphalerite studied by medium energy ion scattering and XPS , 2007 .

[63]  S. Sie,et al.  The distribution and mineral hosts of silver in eastern Australian volcanogenic massive sulfide deposits , 1996 .

[64]  J. Martín,et al.  An integrated thermodynamic mixing model for sphalerite geobarometry from 300 to 850°C and up to 1 GPa , 2005 .

[65]  I. S. Oen,et al.  Oscillatory zoning of a discontinuous solid-solution series: sphalerite-stannite , 1980 .

[66]  J. Brugger,et al.  'Invisible gold' in bismuth chalcogenides , 2009 .

[67]  Shuji Ono,et al.  Polymetallic Mineralization at the Suttsu Vein‐type Deposit, Southwestern Hokkaido, Japan , 2004 .

[68]  M. Binnewies,et al.  Lattice constants and molar volume in the system ZnS, ZnSe, CdS, CdSe , 2003 .

[69]  N. Cook,et al.  Lamellar minerals of the cuprobismutite series and related paderaite: A new occurrence and implications , 2003 .

[70]  P. Bethke,et al.  Chalcopyrite disease in sphalerite : pathology and epidemiology , 1987 .

[71]  N. Cook,et al.  Regional setting and geochronology of the Late Cretaceous Banatitic Magmatic and Metallogenetic Belt , 2002 .

[72]  Z. Johan,et al.  Présence de grenats, Ca3Ga (GeO4)3, Ca3Al2[(Ge, Si)O4]3 et d'un équivalent ferrifère, germanifère et gallifère de la sapphirine, Fe4(Ga,Sn, Fe)4 (Ga, Ge)6O20, dans la blende des gisements de la zone axiale pyrénéenne. Conditions de formation des phases germanifères et gallifères , 1986 .

[73]  F. Melcher,et al.  Zinc–germanium ores of the Tres Marias Mine, Chihuahua, Mexico , 2009 .

[74]  R. Watling,et al.  The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to the analysis of selected sulphide minerals , 1995 .

[75]  N. Shikazono,et al.  Iron and zinc partitioning between coexisting stannite and sphalerite: a possible indicator of temperature and sulfur fugacity , 1985 .

[76]  E. Ohta Occurrence and Chemistry of Indium-containing Minerals from the Toyoha Mine, Hokkaido, Japan , 1989 .

[77]  H. Barnes,et al.  Sphalerite geothermometry and geobarometry , 1971 .

[78]  L. Bailly,et al.  NEW OCCURRENCES OF TELLURIDES AND ARGYRODITE IN ROŞIA MONTAN Ǎ, APUSENI MOUNTAINS, ROMANIA, AND THEIR METALLOGENIC SIGNIFICANCE , 2006 .

[79]  P. Marion,et al.  Tin and indium mineralogy within selected samples from the Neves Corvo ore deposit (Portugal): a multidisciplinary study , 2003 .

[80]  J. Carrera,et al.  Coupled thermal, hydraulic and geochemical evolution of pyritic tailings in unsaturated column experiments , 2007 .

[81]  Yun Liu,et al.  The crystal chemistry of Fe-bearing sphalerites: An infrared spectroscopic study , 2008 .

[82]  C. Ayora,et al.  Sphalerite dissolution kinetics in acidic environment , 2007 .

[83]  M. Axelsson,et al.  Determination of major and trace elements in sphalerite using laser ablation double focusing sector field ICP-MS , 2001 .

[84]  S. Scott,et al.  Phase relations in the Fe-Zn-S system to 5 kbars and temperatures between 325 degrees and 150 degrees C , 1993 .

[85]  A. Alfantazi,et al.  Processing of indium: a review , 2003 .

[86]  F. di Benedetto,et al.  Mn distribution in sphalerite: an EPR study , 2004 .

[87]  S. Luckhaus,et al.  Crystal chemistry of Fe-containing sphalerites , 2003 .

[88]  B. Orberger,et al.  Se, As, Mo, Ag, Cd, In, Sb, Pt, Au, Tl, Re traces in biogenic and abiogenic sulfides from Black Shales (Selwyn Basin, Yukon territories, Canada): A nuclear microprobe study , 2003 .

[89]  R. R. Moskalyk,et al.  Gallium: the backbone of the electronics industry , 2003 .

[90]  P. Buseck,et al.  Modular structures in sulphides: sphalerite/wurtzite-, pyrite/marcasite-, and pyrrhotite-type minerals , 1997 .

[91]  S. Scott Experimental Calibration of the Sphalerite Geobarometer , 1973 .

[92]  R. Pattrick,et al.  TEM STUDY OF INDIUM-BEARING AND COPPER-BEARING GROWTH-BANDED SPHALERITE , 1993 .

[93]  M. Grasserbauer,et al.  Trace element distribution in sphalerites from Pb−Zn-ore occurrences of the Eastern Alps , 1985 .

[94]  Peter M. Herzig,et al.  Indium: Geology, Mineralogy, and Economics , 2010 .

[95]  A. Simeonov,et al.  The Zinkgruvan ore deposit, south-central Sweden; a Proterozoic, proximal Zn-Pb-Ag deposit in distal volcanic facies , 1989 .

[96]  G. Damian,et al.  Another look at nagyágite from the type locality, S$\check{\rm{a}}$c$\check{\rm{a}}$rîmb, Romania: Replacement, chemical variation and petrogenetic implications , 2008 .

[97]  S. Graeser Minor elements in sphalerite and galena from Binnatal , 1969 .

[98]  D. Fornasiero,et al.  Effect of iron content in sphalerite on flotation , 2005 .

[99]  O. Parasyuk,et al.  Phase diagram of the CuInS2–ZnS system and some physical properties of solid solutions phases , 2003 .

[100]  K. Kunugiza Incipient Stage of Ore Formation Process of the Kamioka Zn‐Pb Ore Deposit in the Hida Metamorphic Belt, Central Japan: Leaching and Precipitation of Clinopyroxene , 1999 .

[101]  R. Kershaw,et al.  Growth and characterization of nickel-doped ZnS single crystals , 1989 .

[102]  E. Ohta Silver Mineralization at the Toyoha Mine, Hokkaido , 1992 .

[103]  L. Monteiro,et al.  Geology, petrography, and mineral chemistry of the Vazante non-sulfide and Ambrósia and Fagundes sulfide-rich carbonate-hosted Zn–(Pb) deposits, Minas Gerais, Brazil , 2006 .

[104]  N. Barreau Indium sulfide and relatives in the world of photovoltaics , 2009 .

[105]  M. Deb,et al.  Mineralogical evolution of indium in high grade tin-polymetallic hydrothermal veins — A comparative study from Tosham, Haryana state, India and Goka, Naegi district, Japan , 2008 .

[106]  Yasushi Watanabe Pull-apart Vein System of the Toyoha Deposit, the Most Productive Ag-Pb-Zn Vein-Type Deposit in Japan , 1990 .

[107]  Z. Qian Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits , 1987 .

[108]  W. Gottesmann,et al.  Sphalerite composition and ore genesis at the Tumurtijn-ovoo Fe-Mn-Zn skarn deposit, Mongolia , 2009 .

[109]  N. Cook,et al.  Bismuth tellurides and sulphosalts from the Larga hydrothermal system, Metaliferi Mts , Romania: Paragenesis and genetic significance , 2004, Mineralogical Magazine.

[110]  M. Schwartz Cadmium in Zinc Deposits: Economic Geology of a Polluting Element , 2000 .

[111]  A. H. Clark Arseni an sphalerite from Mina Alcarán, Pampa Larga, Copiapö, Chile , 1970 .

[112]  P. Möller Correlation of homogenization temperatures of accessory minerals from sphalerite-bearing deposits and Ga/Ge model temperatures , 1987 .

[113]  Société géologique de Belgique,et al.  Gisements stratiformes et provinces cuprifères , 1974 .

[114]  Z. Johan Indium and germanium in the structure of sphalerite: an example of coupled substitution with Copper , 1988 .

[115]  D. Wang,et al.  Gallium-bearing sphalerite in a metal-sulfide nodule of the Qingzhen (EH3) chondrite , 1986 .

[116]  R. Woods,et al.  The surface composition of natural sphalerites under oxidative leaching conditions , 1989 .

[117]  L. Cabri,et al.  Proton-microprobe analysis of trace elements in sulfides from some massive-sulfide deposits , 1985 .

[118]  D. R. Owens,et al.  The crystallography of sakuraiite , 1986 .

[119]  K. Sundblad A genetic reinterpretation of the Falun and Åmmeberg ore types, Bergslagen, Sweden , 1994 .

[120]  G. Beaudoin ACICULAR SPHALERITE ENRICHED IN Ag, Sb, AND Cu EMBEDDED WITHIN COLOR-BANDED SPHALERITE FROM THE KOKANEE RANGE, BRITISH COLUMBIA, CANADA , 2000 .