Extremal Problems for Affine Cubes of Integers

A collection H of integers is called an affine d-cube if there exist d+1 positive integers x0,x1,…, xd so that***** Insert equation here *****We address both density and Ramsey-type questions for affine d-cubes. Regarding density results, upper bounds are found for the size of the largest subset of {1,2,…,n} not containing an affine d-cube. In 1892 Hilbert published the first Ramsey-type result for affine d-cubes by showing that, for any positive integers r and d, there exists a least number n=h(d,r) so that, for any r-colouring of {1,2,…,n}, there is a monochromatic affine d-cube. Improvements for upper and lower bounds on h(d,r) are given for d>2.

[1]  Andrew Thomason,et al.  Multiplicities of subgraphs , 1996, Comb..

[2]  Andrew Thomason Graph products and monochromatic multiplicities , 1997, Comb..

[3]  P. Erdös,et al.  Graph Theory and Probability , 1959 .

[4]  Vojtech Rödl,et al.  On subsets of abelian groups with no 3-term arithmetic progression , 1987, J. Comb. Theory, Ser. A.

[5]  Alan D. Taylor Bounds for the Disjoint Unions Theorem , 1981, J. Comb. Theory, Ser. A.

[6]  Saharon Shelah,et al.  Primitive recursive bounds for van der Waerden numbers , 1988 .

[7]  Paul Erdös,et al.  Quantitative Forms of a Theorem of Hilbert , 1985, J. Comb. Theory, Ser. A.

[8]  F. Behrend On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[10]  A. Leaf GRAPH THEORY AND PROBABILITY , 1957 .

[11]  P. Erdös On extremal problems of graphs and generalized graphs , 1964 .

[12]  Jon Sanders A Generalization of Schur's Theorem , 1968 .

[13]  Zoltán Füredi,et al.  Union-Free Families of Sets and Equations over Fields , 1986 .

[14]  P. Erdös,et al.  On a problem of sidon in additive number theory, and on some related problems , 1941 .

[15]  Neil Hindman,et al.  Finite Sums from Sequences Within Cells of a Partition of N , 1974, J. Comb. Theory, Ser. A.

[16]  Vojtech Rödl,et al.  Quantitative theorems for regular systems of equations , 1988, J. Comb. Theory, Ser. A.

[17]  R. Rado,et al.  Studien zur Kombinatorik , 1933 .

[18]  Z. Füredi Surveys in Combinatorics, 1991: “Turán Type Problems” , 1991 .

[19]  Ronald L. Graham,et al.  A short proof of van der Waerden’s theorem on arithmetic progressions , 1974 .

[20]  Ronald L. Graham,et al.  Rudiments of Ramsey theory , 1981 .

[21]  Vojtech Rödl,et al.  2-Colorings of complete graphs with a small number of monochromatic K4 subgraphs , 1993, Discret. Math..

[22]  E. Szemeri~di,et al.  On Sets of Integers Containing No Four Elements in Arithmetic Progression , .

[23]  Ramsey Theory,et al.  Ramsey Theory , 2020, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.

[24]  R. Graham,et al.  Ramsey’s theorem for $n$-parameter sets , 1971 .

[25]  A. Goodman On Sets of Acquaintances and Strangers at any Party , 1959 .

[26]  Chung-Tao Yang A theorem in finite projective geometry , 1949 .

[27]  Walter A. Deuber On van der Waerden's Theorem on Arithmetic Progressions , 1982, J. Comb. Theory, Ser. A.

[28]  L. Lovász Combinatorial problems and exercises , 1979 .

[29]  D. Hilbert,et al.  Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten , 1933 .