Analog computation beyond the Turing limit
暂无分享,去创建一个
[1] David V. Forrest. The Physics of Immortality: Modern Cosmology, God, and Resurrection , 1996 .
[2] N. Costa,et al. Undecidability and incompleteness in classical mechanics , 1991 .
[3] Michael Barr,et al. The Emperor's New Mind , 1989 .
[4] Olivier Bournez,et al. An Analog Characterization of Elementarily Computable Functions over the Real Numbers , 2004, ICALP.
[5] B. Jack Copeland,et al. EVEN TURING MACHINES CAN COMPUTE UNCOMPUTABLE FUNCTIONS , 1998 .
[6] H. Stowell. The emperor's new mind R. Penrose, Oxford University Press, New York (1989) 466 pp. $24.95 , 1990, Neuroscience.
[7] Claude E. Shannon,et al. Mathematical Theory of the Differential Analyzer , 1941 .
[8] P. Odifreddi. Classical recursion theory , 1989 .
[9] Lee A. Rubel,et al. Some mathematical limitations of the general-purpose analog computer , 1988 .
[10] M. B. Pour-El,et al. Abstract computability and its relation to the general purpose analog computer (some connections between logic, differential equations and analog computers) , 1974 .
[11] The Structure of Time. , 1980 .
[12] Hava T. Siegelmann,et al. Analog computation via neural networks , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.
[13] C. Moore,et al. Closed-form Analytic Maps in One and Two DimensionsCan Simulate Turing Machines , 1996 .
[14] István Németi,et al. Non-Turing Computations Via Malament–Hogarth Space-Times , 2001 .
[15] John L. Casti,et al. Unconventional Models of Computation , 2002, Lecture Notes in Computer Science.
[16] Jerzy Mycka,et al. The P ne NP conjecture in the context of real and complex analysis , 2006, J. Complex..
[17] A. Grzegorczyk. On the definitions of computable real continuous functions , 1957 .
[18] Gregory J. Chaitin,et al. The Limits of Mathematics , 1995, J. Univers. Comput. Sci..
[19] Cristopher Moore,et al. Generalized shifts: unpredictability and undecidability in dynamical systems , 1991 .
[20] Cristopher Moore,et al. Closed-for Analytic Maps in One and Two Dimensions can Simulate Universal Turing Machines , 1999, Theor. Comput. Sci..
[21] Jerzy Mycka,et al. Undecidability over Continuous Time , 2006, Log. J. IGPL.
[22] Lee A. Rubel,et al. Digital simulation of analog computation and Church's thesis , 1989, Journal of Symbolic Logic.
[23] Cristopher Moore,et al. Recursion Theory on the Reals and Continuous-Time Computation , 1996, Theor. Comput. Sci..
[24] Oron Shagrir,et al. Physical Hypercomputation and the Church–Turing Thesis , 2003, Minds and Machines.
[25] Jerzy Mycka,et al. Real Recursive Functions and Baire Classes , 2004, Fundam. Informaticae.
[26] Yurii Rogozhin,et al. Small Universal Turing Machines , 1996, Theor. Comput. Sci..
[27] Frank J. Tipler,et al. Book-Review - the Physics of Immortality - Modern Cosmology God and the Resurrection of the Dead , 1994 .
[28] N. Cutland. Computability: An Introduction to Recursive Function Theory , 1980 .
[29] Ian Stewart,et al. Deciding the undecidable , 1991, Nature.
[30] Klaus Weihrauch,et al. The Arithmetical Hierarchy of Real Numbers , 1999, MFCS.
[31] Vyvyan Evans,et al. The Structure of Time , 2003 .
[32] Jerzy Mycka. mu -Recursion and infinite limits , 2003, Theor. Comput. Sci..
[33] Jerzy Mycka,et al. Real recursive functions and their hierarchy , 2004, J. Complex..
[34] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[35] Lee A. Rubel,et al. The Extended Analog Computer , 1993 .
[36] Cristopher Moore,et al. An Analog Characterization of the Grzegorczyk Hierarchy , 2002, J. Complex..
[37] Zhihong Xia,et al. The existence of noncollision singularities in newtonian systems , 1992 .