Logarithmic Sobolev inequalities on non-isotropic Heisenberg groups
暂无分享,去创建一个
[1] Fabrice Baudoin,et al. Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality , 2011, 1106.0491.
[2] E. Lieb,et al. Sharp constants in several inequalities on the Heisenberg group , 2010, 1009.1410.
[3] M. Gordina. An application of a functional inequality to quasi-invariance in infinite dimensions , 2016, 1602.01293.
[4] Nathaniel Eldredge. Gradient estimates for the subelliptic heat kernel on H-type groups , 2009, 0904.1781.
[5] Hong-Quan Li. Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg , 2006 .
[6] On logarithmic Sobolev inequalities for the heat kernel on the Heisenberg group , 2016, 1607.02741.
[7] Esther Bou Dagher,et al. Coercive inequalities in higher-dimensional anisotropic heisenberg group , 2021, Analysis and Mathematical Physics.
[8] T. Melcher,et al. Hypoelliptic heat kernel inequalities on the Heisenberg group , 2005 .
[9] M. Ledoux,et al. Analysis and Geometry of Markov Diffusion Operators , 2013 .
[10] B. Zegarliński,et al. Coercive Inequalities on Metric Measure Spaces , 2009, 0905.1713.
[11] Jun Hu,et al. Gradient Estimates for the Heat Semigroup on H-Type Groups , 2010 .
[12] L. Gross. Logarithmic Sobolev inequalities and contractivity properties of semigroups , 1993 .
[13] M. Ledoux,et al. Logarithmic Sobolev Inequalities , 2014 .
[14] Hong-Quan Li. Estimations asymptotiques du noyau de la chaleur sur les groupes de Heisenberg , 2007 .
[15] M. Gordina,et al. A subelliptic Taylor isomorphism on infinite-dimensional Heisenberg groups , 2011, 1106.1970.
[16] Fabrice Baudoin,et al. Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries , 2011, 1101.3590.
[17] Claude Viterbo,et al. An introduction to symplectic topology , 1991 .
[18] H. Kuo. Gaussian Measures in Banach Spaces , 1975 .
[19] Leonard Gross,et al. Logarithmic Sobolev inequalities on Lie groups , 1992 .
[20] B. Gaveau,et al. Hamilton–Jacobi theory and the heat kernel on Heisenberg groups , 2000 .
[21] Kristian Kirsch,et al. Methods Of Modern Mathematical Physics , 2016 .
[22] M. Gordina,et al. Heat Kernel Analysis on Infinite-Dimensional Heisenberg Groups , 2008, 0805.1650.
[23] L. Hörmander. Hypoelliptic second order differential equations , 1967 .
[24] Fabrice Baudoin,et al. Quasi-invariance for heat kernel measures on sub-Riemannian infinite-dimensional Heisenberg groups , 2011, 1108.1527.
[25] F. Greenleaf,et al. Basic theory and examples , 1990 .
[26] Francesco Uguzzoni,et al. Stratified Lie groups and potential theory for their sub-Laplacians , 2007 .
[27] B. Schmuland,et al. Tightness of general C1,p capacities on Banach space , 1992 .
[28] Fabrice Baudoin,et al. Log-Sobolev inequalities on the horizontal path space of a totally geodesic foliation , 2015, 1503.08180.
[29] Alice Guionnet,et al. Lectures on Logarithmic Sobolev Inequalities , 2003 .
[30] Yehui Zhang,et al. Revisiting the heat kernel on isotropic and nonisotropic Heisenberg groups* , 2018, Communications in Partial Differential Equations.
[31] L. Gross,et al. Holomorphic functions and subelliptic heat kernels over Lie groups , 2009 .
[32] F. Greenleaf,et al. Representations of nilpotent Lie groups and their applications , 1989 .
[33] V. Bogachev. Gaussian Measures on a , 2022 .
[34] GROWTH OF TAYLOR COEFFICIENTS OVER COMPLEX HOMOGENEOUS SPACES , 2010 .
[35] Djalil CHAFAÏ,et al. On gradient bounds for the heat kernel on the Heisenberg group , 2007, 0710.3139.
[36] B. Hall. Lie Groups, Lie Algebras, and Representations , 2003 .
[37] A. Fraser. An (n + 1)– fold Marcinkiewicz multiplier theorem on the Heisenberg group , 2001, Bulletin of the Australian Mathematical Society.
[38] Nathaniel Eldredge,et al. Hypoelliptic heat kernels on infinite-dimensional Heisenberg groups , 2013, 1310.8010.