Logarithmic Sobolev inequalities on non-isotropic Heisenberg groups

We study logarithmic Sobolev inequalities with respect to a heat kernel measure on finite-dimensional and infinite-dimensional Heisenberg groups. Such a group is the simplest non-trivial example of a sub-Riemannian manifold. First we consider logarithmic Sobolev inequalities on non-isotropic Heisenberg groups. These inequalities are considered with respect to the hypoelliptic heat kernel measure, and we show that the logarithmic Sobolev constants can be chosen to be independent of the dimension of the underlying space. In this setting, a natural Laplacian is not an elliptic but a hypoelliptic operator. The argument relies on comparing logarithmic Sobolev constants for the threedimensional non-isotropic and isotropic Heisenberg groups, and tensorization of logarithmic Sobolev inequalities in the sub-Riemannian setting. Furthermore, we apply these results in an infinite-dimensional setting and prove a logarithmic Sobolev inequality on an infinite-dimensional Heisenberg group modelled on an abstract Wiener space.

[1]  Fabrice Baudoin,et al.  Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality , 2011, 1106.0491.

[2]  E. Lieb,et al.  Sharp constants in several inequalities on the Heisenberg group , 2010, 1009.1410.

[3]  M. Gordina An application of a functional inequality to quasi-invariance in infinite dimensions , 2016, 1602.01293.

[4]  Nathaniel Eldredge Gradient estimates for the subelliptic heat kernel on H-type groups , 2009, 0904.1781.

[5]  Hong-Quan Li Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg , 2006 .

[6]  On logarithmic Sobolev inequalities for the heat kernel on the Heisenberg group , 2016, 1607.02741.

[7]  Esther Bou Dagher,et al.  Coercive inequalities in higher-dimensional anisotropic heisenberg group , 2021, Analysis and Mathematical Physics.

[8]  T. Melcher,et al.  Hypoelliptic heat kernel inequalities on the Heisenberg group , 2005 .

[9]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[10]  B. Zegarliński,et al.  Coercive Inequalities on Metric Measure Spaces , 2009, 0905.1713.

[11]  Jun Hu,et al.  Gradient Estimates for the Heat Semigroup on H-Type Groups , 2010 .

[12]  L. Gross Logarithmic Sobolev inequalities and contractivity properties of semigroups , 1993 .

[13]  M. Ledoux,et al.  Logarithmic Sobolev Inequalities , 2014 .

[14]  Hong-Quan Li Estimations asymptotiques du noyau de la chaleur sur les groupes de Heisenberg , 2007 .

[15]  M. Gordina,et al.  A subelliptic Taylor isomorphism on infinite-dimensional Heisenberg groups , 2011, 1106.1970.

[16]  Fabrice Baudoin,et al.  Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries , 2011, 1101.3590.

[17]  Claude Viterbo,et al.  An introduction to symplectic topology , 1991 .

[18]  H. Kuo Gaussian Measures in Banach Spaces , 1975 .

[19]  Leonard Gross,et al.  Logarithmic Sobolev inequalities on Lie groups , 1992 .

[20]  B. Gaveau,et al.  Hamilton–Jacobi theory and the heat kernel on Heisenberg groups , 2000 .

[21]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[22]  M. Gordina,et al.  Heat Kernel Analysis on Infinite-Dimensional Heisenberg Groups , 2008, 0805.1650.

[23]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[24]  Fabrice Baudoin,et al.  Quasi-invariance for heat kernel measures on sub-Riemannian infinite-dimensional Heisenberg groups , 2011, 1108.1527.

[25]  F. Greenleaf,et al.  Basic theory and examples , 1990 .

[26]  Francesco Uguzzoni,et al.  Stratified Lie groups and potential theory for their sub-Laplacians , 2007 .

[27]  B. Schmuland,et al.  Tightness of general C1,p capacities on Banach space , 1992 .

[28]  Fabrice Baudoin,et al.  Log-Sobolev inequalities on the horizontal path space of a totally geodesic foliation , 2015, 1503.08180.

[29]  Alice Guionnet,et al.  Lectures on Logarithmic Sobolev Inequalities , 2003 .

[30]  Yehui Zhang,et al.  Revisiting the heat kernel on isotropic and nonisotropic Heisenberg groups* , 2018, Communications in Partial Differential Equations.

[31]  L. Gross,et al.  Holomorphic functions and subelliptic heat kernels over Lie groups , 2009 .

[32]  F. Greenleaf,et al.  Representations of nilpotent Lie groups and their applications , 1989 .

[33]  V. Bogachev Gaussian Measures on a , 2022 .

[34]  GROWTH OF TAYLOR COEFFICIENTS OVER COMPLEX HOMOGENEOUS SPACES , 2010 .

[35]  Djalil CHAFAÏ,et al.  On gradient bounds for the heat kernel on the Heisenberg group , 2007, 0710.3139.

[36]  B. Hall Lie Groups, Lie Algebras, and Representations , 2003 .

[37]  A. Fraser An (n + 1)– fold Marcinkiewicz multiplier theorem on the Heisenberg group , 2001, Bulletin of the Australian Mathematical Society.

[38]  Nathaniel Eldredge,et al.  Hypoelliptic heat kernels on infinite-dimensional Heisenberg groups , 2013, 1310.8010.