A symbol-reliability based message-passing decoding algorithm for nonbinary LDPC codes over finite fields

Based on the idea of plurality voting, we develop a low-complexity symbol-reliability based message-passing decoding algorithm for nonbinary low-density parity-check (LDPC) codes over finite fields. A key feature of the algorithm is that the message passed in the Tanner graph is the field element with the highest reliability. This leads to a very simple check node update. The algorithm requires only finite and integer operations. Moreover, the estimation of the signal-to-noise ratio (SNR) is not needed. Compared to the Fast Fourier Transform based q-ary sum-product algorithm (FFT-QSPA), the proposed decoding algorithm provides an excellent trade-off between performance and complexity for the nonbinary LDPC codes constructed based on finite geometries, finite fields and cyclotomic cosets.

[1]  Amir H. Banihashemi,et al.  A differential binary message-passing LDPC decoder , 2009, IEEE Transactions on Communications.

[2]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[3]  D. Declercq,et al.  Fast Decoding Algorithm for LDPC over GF(2q) , 2003 .

[4]  Shu Lin,et al.  Construction of nonbinary cyclic, quasi-cyclic and regular LDPC codes: a finite geometry approach , 2008, IEEE Transactions on Communications.

[5]  C. Spagnol,et al.  Hardware Implementation of ${\rm GF}(2^{m})$ LDPC Decoders , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Baoming Bai,et al.  Nonbinary LDPC codes constructed based on a cyclic MDS code and a low-complexity nonbinary message-passing decoding algorithm , 2010, IEEE Communications Letters.

[7]  Valentin Savin,et al.  Min-Max decoding for non binary LDPC codes , 2008, 2008 IEEE International Symposium on Information Theory.

[8]  Shie Mannor,et al.  Stochastic Decoding of LDPC Codes over GF(q) , 2009, 2009 IEEE International Conference on Communications.

[9]  David Declercq,et al.  Design of regular (2,d/sub c/)-LDPC codes over GF(q) using their binary images , 2008, IEEE Transactions on Communications.

[10]  D. Mackay,et al.  Evaluation of Gallager Codes for Short Block Length and High Rate Applications , 2001 .

[11]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[12]  Shu Lin,et al.  A binary message-passing decoding algorithm for LDPC codes , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[13]  Hongxin Song,et al.  Reduced-complexity decoding of Q-ary LDPC codes for magnetic recording , 2003 .

[14]  David J. C. MacKay,et al.  Low-density parity check codes over GF(q) , 1998, IEEE Communications Letters.

[15]  Khaled A. S. Abdel-Ghaffar,et al.  Two reliability-based iterative majority-logic decoding algorithms for LDPC codes , 2009, IEEE Transactions on Communications.

[16]  William P. Marnane,et al.  Hardware Implementation of GF(2 m ) LDPC Decoders. , 2009 .

[17]  Shu Lin,et al.  Transactions Papers - Constructions of Nonbinary Quasi-Cyclic LDPC Codes: A Finite Field Approach , 2008, IEEE Transactions on Communications.

[18]  Henk Wymeersch,et al.  Log-domain decoding of LDPC codes over GF(q) , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[19]  Marcel Ambroze,et al.  GF(2m) Low-Density Parity-Check Codes Derived from Cyclotomic Cosets , 2005, ArXiv.

[20]  M. Fossorier,et al.  Architecture of a low-complexity non-binary LDPC decoder for high order fields , 2007, 2007 International Symposium on Communications and Information Technologies.

[21]  Amir H. Banihashemi,et al.  A Differential Binary Message-Passing LDPC Decoder , 2007, IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.

[22]  M. Fossorier,et al.  Design of regular (2,d/sub c/)-LDPC codes over GF(q) using their binary images , 2008, IEEE Transactions on Communications.

[23]  David Declercq,et al.  Decoding Algorithms for Nonbinary LDPC Codes Over GF$(q)$ , 2007, IEEE Transactions on Communications.