Amperometric Electrochemical Microsystem for a Miniaturized Protein Biosensor Array

Protein-based bioelectrochemical interfaces offer great potential for rapid detection, continuous use, and miniaturized sensor arrays. This paper introduces a microsystem platform that enables multiple bioelectrochemical interfaces to be interrogated simultaneously by an onchip amperometric readout system. A post-complementary metal-oxide semiconductor (CMOS) fabrication procedure is described that permits the formation of planar electrode arrays and self assembly of biosensor interfaces on the electrodes. The onchip, 0.5-mum CMOS readout electronics include a compact potentiostat that supports a very broad range of input currents-6 pA to 10 muA-to accommodate diverse biosensor interfaces. The 2.3 times 2.2-mm chip operates from a 5-V supply at 0.6 mA. A prototype electrochemical sensor platform, including an onchip potentiostat and miniaturized biosensor array, was characterized by using cyclic voltammetry. The linear relationship between the oxidization peak values and the concentrations of target analytes in the solution verifies functionality of the system and demonstrates the potential for future implementations of this platform in high sensitivity, low cost, and onchip protein-based sensor arrays.

[1]  Torsten Lehmann,et al.  Integrating data converters for picoampere currents from electrochemical transducers , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[2]  R. Kakerow,et al.  Low-power Single-chip CMOS Potentiostat , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[3]  Hui Xu,et al.  Electrochemical Sensors for Clinic Analysis , 2008, Sensors.

[4]  S. P. Fodor,et al.  High density synthetic oligonucleotide arrays , 1999, Nature Genetics.

[5]  Eugenio Culurciello,et al.  An Integrated Patch-Clamp Amplifier in Silicon-on-Sapphire CMOS , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  C. Ahn,et al.  On-Chip Electrochemical Analysis System Using Nanoelectrodes and Bioelectronic CMOS Chip , 2006, IEEE Sensors Journal.

[7]  M. Roham,et al.  Wireless Amperometric Neurochemical Monitoring Using an Integrated FSK Telemetry Circuit , 2007, 2007 3rd International IEEE/EMBS Conference on Neural Engineering.

[8]  Nadia Nikolaus,et al.  Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing , 2008 .

[9]  A. Mason,et al.  Biomimetic interfaces for a multifunctional biosensor array microsystem , 2004, Proceedings of IEEE Sensors, 2004..

[10]  J. Zeikus,et al.  Mutation of Tyr-218 to Phe in Thermoanaerobacter ethanolicus Secondary Alcohol Dehydrogenase: Effects on Bioelectronic Interface Performance , 2007, Applied biochemistry and biotechnology.

[11]  Miltiades I. Karayannis,et al.  Enzyme Based Amperometric Biosensors for Food Analysis , 2002 .

[12]  Kartikeya Murari,et al.  VLSI Potentiostat Array With Oversampling Gain Modulation for Wide-Range Neurotransmitter Sensing , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[13]  Ilsoon Lee,et al.  Nanostructured biosensor for measuring neuropathy target esterase activity. , 2007, Analytical chemistry.

[14]  P. Brown,et al.  Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Serban F. Peteu,et al.  A Clark-type oxidase enzyme-based amperometric microbiosensor for sensing glucose, galactose, or choline , 1996 .

[16]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[17]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[18]  Shantanu Chakrabartty,et al.  A Multichannel Femtoampere-Sensitivity Potentiostat Array for Biosensing Applications , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Robin F. B. Turner,et al.  A CMOS potentiostat for amperometric chemical sensors , 1987 .

[20]  R. Worden,et al.  In situ mapping of community-level cellular response with catalytic microbiosensors. , 1998, Biosensors & bioelectronics.

[21]  Pamela Abshire,et al.  In situ electrochemical control of electroactive polymer films on a CMOS chip , 2008 .

[22]  Yue Huang,et al.  Post-CMOS Compatible Microfabrication of a Multi-Analyte Bioelectrochemical Sensor Array Microsystem , 2006, 2006 5th IEEE Conference on Sensors.

[23]  Jichun Zhang,et al.  Electrochemical array microsystem with integrated potentiostat , 2005, IEEE Sensors, 2005..

[24]  R. Worden,et al.  Versatile bioelectronic interfaces based on heterotrifunctional linking molecules. , 2006, Biosensors & bioelectronics.

[25]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[26]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008, Sensors.

[27]  John G. Harris,et al.  VLSI potentiostat for amperometric measurements for electrolytic reactions , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[28]  María E Bosch,et al.  Optical chemical biosensors for high-throughput screening of drugs. , 2007, Combinatorial chemistry & high throughput screening.

[29]  I. Willner,et al.  Electrical contacting of flavoenzymes and NAD(P)+-dependent enzymes by reconstitution and affinity interactions on phenylboronic acid monolayers associated with Au-electrodes. , 2002, Journal of the American Chemical Society.

[30]  Jichun Zhang,et al.  A low noise readout circuit for integrated electrochemical biosensor arrays , 2004, Proceedings of IEEE Sensors, 2004..

[31]  Gert Cauwenberghs,et al.  16-Channel Integrated Potentiostat for Distributed Neurochemical Sensing , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  B. Cornell,et al.  Making lipid membranes even tougher , 2007 .

[33]  Sachin R. Jadhav,et al.  Fabrication of highly insulating tethered bilayer lipid membrane using yeast cell membrane fractions for measuring ion channel activity. , 2008, Journal of colloid and interface science.

[34]  Minhaz Uddin Ahmed,et al.  Electrochemical biosensors for U-healthcare , 2008 .

[35]  R. Thewes,et al.  A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion , 2004, IEEE Journal of Solid-State Circuits.

[36]  G. Gibson,et al.  Microarray Analysis , 2020, Definitions.