Fault-tolerant cycle embedding in the hypercube with more both faulty vertices and faulty edges

Let f"v (respectively, f"e) denote the number of faulty vertices (respectively, edges) in an n-dimensional hypercube. In this paper, we show that a fault-free cycle of length of at least 2^n-2f"v can be embedded in an n-dimensional hypercube with f"e=0 or f"e=

[1]  Gerard Tel,et al.  Topics in distributed algorithms , 1991 .

[2]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[3]  Sajal K. Das,et al.  Book Review: Introduction to Parallel Algorithms and Architectures : Arrays, Trees, Hypercubes by F. T. Leighton (Morgan Kauffman Pub, 1992) , 1992, SIGA.

[4]  Jimmy J. M. Tan,et al.  Fault-tolerant hamiltonian laceability of hypercubes , 2002, Inf. Process. Lett..

[5]  Gen-Huey Chen,et al.  Embed longest rings onto star graphs with vertex faults , 1998, Proceedings. 1998 International Conference on Parallel Processing (Cat. No.98EX205).

[6]  Abhijit Sengupta On Ring Embedding in Hypercubes with Faulty Nodes and Links , 1998, Inf. Process. Lett..

[7]  Cauligi S. Raghavendra,et al.  Embedding and Reconfiguration of Binary Trees in Faulty Hypercubes , 1996, IEEE Trans. Parallel Distributed Syst..

[8]  Yu-Chee Tseng Embedding a Ring in a Hypercube with Both Faulty Links and Faulty Nodes , 1996, Inf. Process. Lett..

[9]  D. West Introduction to Graph Theory , 1995 .

[10]  Ming-Syan Chen,et al.  Processor Allocation in an N-Cube Multiprocessor Using Gray Codes , 1987, IEEE Transactions on Computers.

[11]  Yu-Chee Tseng,et al.  Fault-Tolerant Ring Embedding in a Star Graph with Both Link and Node Failures , 1997, IEEE Trans. Parallel Distributed Syst..

[12]  Mee Yee Chan,et al.  Distributed Fault-Tolerant Embeddings of Rings in Hypercubes , 1990, J. Parallel Distributed Comput..

[13]  Jung-Sheng Fu Fault-tolerant cycle embedding in the hypercube , 2003, Parallel Comput..

[14]  Jehoshua Bruck,et al.  Embedding Cube-Connected Cycles Graphs into Faulty Hypercubes , 1994, IEEE Trans. Computers.

[15]  Arunabha Sen,et al.  On some topological properties of hypercube, incomplete hypercube and supercube , 1993, [1993] Proceedings Seventh International Parallel Processing Symposium.

[16]  Richard C. T. Lee,et al.  An Optimal Embedding of Cycles into Incomplete Hypercubes , 1999, Inf. Process. Lett..

[17]  Mee Yee Chan,et al.  Fault-Tolerant Embedding of Complete Binary Trees in Hypercubes , 1993, IEEE Trans. Parallel Distributed Syst..

[18]  Bella Bose,et al.  Fault-Tolerant Ring Embedding in de Bruijn Networks , 1993, IEEE Trans. Computers.

[19]  Shahram Latifi,et al.  Optimal ring embedding in hypercubes with faulty links , 1992, [1992] Digest of Papers. FTCS-22: The Twenty-Second International Symposium on Fault-Tolerant Computing.

[20]  Yu-Chee Tseng,et al.  On the Embedding of a Class of Regular Graphs in a Faulty Hypercube , 1996, J. Parallel Distributed Comput..

[21]  Jung-Sheng Fu,et al.  Hamiltonicity of the Hierarchical Cubic Network , 2001, Theory of Computing Systems.

[22]  Cauligi S. Raghavendra,et al.  Embedding of Rings and Meshes onto Faulty Hypercubes Using Free Dimensions , 1994, IEEE Trans. Computers.